Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatiotemporal clustering of great earthquakes on a transform fault controlled by geometry

Abstract

Minor changes in geometry along the length of mature strike-slip faults may act as conditional barriers to earthquake rupture, terminating some and allowing others to pass. This hypothesis remains largely untested because palaeoearthquake data that constrain spatial and temporal patterns of fault rupture are generally imprecise. Here we develop palaeoearthquake event data that encompass the last 20 major-to-great earthquakes along approximately 320 km of the Alpine Fault in New Zealand with sufficient temporal resolution and spatial coverage to reveal along-strike patterns of rupture extent. The palaeoearthquake record shows that earthquake terminations tend to cluster in time near minor along-strike changes in geometry. These terminations limit the length to which rupture can grow and produce two modes of earthquake behaviour characterized by phases of major (Mw 7–8) and great (Mw > 8) earthquakes. Physics-based simulations of seismic cycles closely resemble our observations when parameterized with realistic fault geometry. Switching between the rupture modes emerges due to heterogeneous stress states that evolve over multiple seismic cycles in response to along-strike differences in geometry. These geometric complexities exert a first-order control on rupture behaviour that is not currently accounted for in fault-source models for seismic hazard.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Alpine Fault, study sites and the palaeoseismic proxy used in this study.
Fig. 2: Along-strike rupture extent reconstructions for the last 20 Alpine Fault earthquakes that ruptured the Central and/or the South Westland (SW) sections.
Fig. 3: Earthquake simulation experiment exploring the relationship between geometry and mode-switching rupture behaviour.
Fig. 4: 100,000 yr RSQSim rupture simulation for realistic Alpine Fault geometry showing a mode-switching behaviour similar to that inferred from the palaeoseismic data.

Similar content being viewed by others

Data availability

Core sedimentological (bulk density, grain size and geochemistry) and geochronological data (radiocarbon dates and age-model-derived EES age PDFs) generated during the study are available in a Figshare repository (https://figshare.com/projects/Geometry_controls_spatiotemporal_clustering_of_great_earthquakes_on_a_transform_fault/97906) or by request to the corresponding author. The synthetic earthquake catalogues for events Mw ≥ 6 produced by the 33 kyr and 100 kyr RSQSim simulations are also available from the Figshare repository. Source data are provided with this paper.

Code availability

The open source software package OxCal used to the generate earthquake chronologies is available for download or online use from https://c14.arch.ox.ac.uk/oxcal.html. The OxCal codes used to produce the age-depth models for the lakes are available in the Figshare repository (https://figshare.com/projects/Geometry_controls_spatiotemporal_clustering_of_great_earthquakes_on_a_transform_fault/97906). The source code for the RSQSim earthquake simulator is available from the authors upon request.

References

  1. Bouchon, M. et al. Faulting characteristics of supershear earthquakes. Tectonophysics 493, 244–253 (2010).

    Article  Google Scholar 

  2. Song, S. G., Beroza, G. C. & Segall, P. A unified source model for the 1906 San Francisco earthquake. Bull. Seismol. Soc. Am. 98, 823–831 (2008).

    Article  Google Scholar 

  3. Robinson, D. P., Das, S. & Searle, M. P. Earthquake fault superhighways. Tectonophysics 493, 236–243 (2010).

    Article  Google Scholar 

  4. Wesnousky, S. G. Predicting the endpoints of earthquake ruptures. Nature 444, 358–360 (2006).

    Article  Google Scholar 

  5. Biasi, G. P. & Wesnousky, S. G. Steps and gaps in ground ruptures: empirical bounds on rupture propagation. Bull. Seismol. Soc. Am. 106, 1110–1124 (2016).

    Article  Google Scholar 

  6. Elliott, A. J., Oskin, M. E., Liu-Zeng, J. & Shao, Y. Rupture termination at restraining bends: the last great earthquake on the Altyn Tagh fault. Geophys. Res. Lett. 42, 2164–2170 (2015).

    Article  Google Scholar 

  7. Elliott, A. J., Oskin, M. E., Liu-zeng, J. & Shao, Y. X. Persistent rupture terminations at a restraining bend from slip rates on the eastern Altyn Tagh fault. Tectonophysics 733, 57–72 (2018).

    Article  Google Scholar 

  8. Lozos, J. C., Oglesby, D. D., Duan, B. & Wesnousky, S. G. The effects of double fault bends on rupture propagation: a geometrical parameter study. Bull. Seismol. Soc. Am. 101, 385–398 (2011).

    Article  Google Scholar 

  9. Biasi, G. P. & Wesnousky, S. G. Bends and ends of surface ruptures. Bull. Seismol. Soc. Am. 107, 2543–2560 (2017).

    Article  Google Scholar 

  10. Duan, B. C. & Oglesby, D. D. Multicycle dynamics of nonplanar strike-slip faults. J. Geophys. Res. Solid Earth 110, B03304 (2005).

    Article  Google Scholar 

  11. Duan, B. & Oglesby, D. D. Nonuniform prestress from prior earthquakes and the effect on dynamics of branched fault systems. J. Geophys. Res. Solid Earth 112, B05308 (2007).

    Article  Google Scholar 

  12. Berryman, K. R. et al. Major earthquakes occur regularly on an isolated plate boundary fault. Science 336, 1690–1693 (2012).

    Article  Google Scholar 

  13. Weldon, R., Scharer, K., Fumal, T. & Biasi, G. Wrightwood and the earthquake cycle: what a long recurrence record tells us about how faults work. GSA Today 14, 4–10 (2004).

    Article  Google Scholar 

  14. Weldon, R. J., Fumal, T. E., Biasi, G. P. & Scharer, K. M. Past and future earthquakes on the San Andreas fault. Science 308, 966–967 (2005).

    Article  Google Scholar 

  15. Lefevre, M., Klinger, Y., Al-Qaryouti, M., Le Béon, M. & Moumani, K. Slip deficit and temporal clustering along the Dead Sea fault from paleoseismological investigations. Sci. Rep. 8, 4511 (2018).

    Article  Google Scholar 

  16. Klinger, Y., Etchebes, M., Tapponnier, P. & Narteau, C. Characteristic slip for five great earthquakes along the Fuyun fault in China. Nat. Geosci. 4, 389–392 (2011).

    Article  Google Scholar 

  17. Ludwig, L. G., Akçiz, S. O., Noriega, G. R., Zielke, O. & Arrowsmith, J. R. Climate-modulated channel incision and rupture history of the San Andreas fault in the Carrizo Plain. Science 327, 1117–1119 (2010).

    Article  Google Scholar 

  18. Zielke, O., Arrowsmith, J. R., Ludwig, L. G. & Akçiz, S. O. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas fault. Science 327, 1119–1122 (2010).

    Article  Google Scholar 

  19. Zielke, O., Klinger, Y. & Arrowsmith, J. R. Fault slip and earthquake recurrence along strike-slip faults—contributions of high-resolution geomorphic data. Tectonophysics 638, 43–62 (2015).

    Article  Google Scholar 

  20. Scharer, K. Changing views of the San Andreas fault. Science 327, 1089–1090 (2010).

    Article  Google Scholar 

  21. Barth, N. C., Boulton, C., Carpenter, B. M., Batt, G. E. & Toy, V. G. Slip localization on the southern Alpine Fault, New Zealand. Tectonics 32, 620–640 (2013).

    Article  Google Scholar 

  22. Howarth, J. D. et al. Past large earthquakes on the Alpine Fault: paleoseismological progress and future directions. New Zeal. J. Geol. Geophys. 61, 309–328 (2018).

    Article  Google Scholar 

  23. Barnes, P. M. Postglacial (after 20 ka) dextral slip rate of the offshore Alpine Fault, New Zealand. Geology 37, 3–6 (2009).

    Article  Google Scholar 

  24. Norris, R. J. & Cooper, A. F. Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand. J. Struct. Geol. 23, 507–520 (2001).

    Article  Google Scholar 

  25. Barth, N. C. et al. New c. 270 kyr strike-slip and uplift rates for the southern Alpine Fault and implications for the New Zealand plate boundary. J. Struct. Geol. 64, 39–52 (2014).

    Article  Google Scholar 

  26. DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

    Article  Google Scholar 

  27. Norris, R. J. & Cooper, A. F. in A Continental Plate Boundary: Tectonics at South Island, New Zealand (eds Okaya, D., Stern, T. & Davey, F.) 157–175 (AGU, 2007).

  28. Wallace, L. M., Beavan, J., McCaffrey, R., Berryman, K. & Denys, P. Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data. Geophys. J. Int. 168, 332–352 (2007).

    Article  Google Scholar 

  29. Howarth, J. D., Fitzsimons, S. J., Norris, R. J. & Jacobsen, G. E. Lake sediments record high intensity shaking that provides insight into the location and rupture length of large earthquakes on the Alpine Fault, New Zealand. Earth Planet. Sci. Lett. 403, 340–351 (2014).

    Article  Google Scholar 

  30. Howarth, J. D., Fitzsimons, S. J., Norris, R. J., Langridge, R. & Vandergoes, M. J. A 2000 yr rupture history for the Alpine Fault derived from Lake Ellery, South Island, New Zealand. Geol. Soc. Am. Bull. 128, 627–643 (2016).

    Article  Google Scholar 

  31. De Pascale, G. P. & Langridge, R. M. New on-fault evidence for a great earthquake in ad 1717, central Alpine Fault, New Zealand. Geology 40, 791–794 (2012).

    Article  Google Scholar 

  32. Wells, A., Yetton, M. D., Duncan, R. P. & Stewart, G. H. Prehistoric dates of the most recent Alpine Fault earthquakes, New Zealand. Geology 27, 995–998 (1999).

    Article  Google Scholar 

  33. Howarth, J. D., Fitzsimons, S. J., Norris, R. J. & Jacobsen, G. E. Lake sediments record cycles of sediment flux driven by large earthquakes on the Alpine Fault, New Zealand. Geology 40, 1091–1094 (2012).

    Article  Google Scholar 

  34. Hovius, N. et al. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet. Sci. Lett. 304, 347–355 (2011).

    Article  Google Scholar 

  35. Howarth, J. D., Fitzsimons, S. J., Jacobsen, G. E., Vandergoes, M. J. & Norris, R. J. Identifying a reliable target fraction for radiocarbon dating sedimentary records from lakes. Quat. Geochronol. 17, 68–80 (2013).

    Article  Google Scholar 

  36. De Pascale, G. P., Quigley, M. C. & Davies, T. R. H. Lidar reveals uniform Alpine Fault offsets and bimodal plate boundary rupture behavior, New Zealand. Geology 42, 411–414 (2014).

    Article  Google Scholar 

  37. Cochran, U. A. et al. A plate boundary earthquake record from a wetland adjacent to the Alpine Fault in New Zealand refines hazard estimates. Earth Planet. Sci. Lett. 464, 175–188 (2017).

    Article  Google Scholar 

  38. Scharer, K. M., Biasi, G. P., Weldon, I. I. R. J. & Fumal, T. E. Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault. Geology 38, 555–558 (2010).

    Article  Google Scholar 

  39. Richards‐Dinger, K. & Dieterich, J. H. RSQSim earthquake simulator. Seismol. Res. Lett. 83, 983–990 (2012).

    Article  Google Scholar 

  40. Stirling, M. et al. National seismic hazard model for New Zealand: 2010 update. Bull. Seismol. Soc. Am. 102, 1514–1542 (2012).

    Article  Google Scholar 

  41. Pagani, M., Hao, K. X., Fujiwara, H., Gerstenberger, M. & Ma, K. F. Appraising the PSHA earthquake source models of Japan, New Zealand, and Taiwan. Seismol. Res. Lett. 87, 1240–1253 (2016).

    Article  Google Scholar 

  42. Field, E. H. et al. Uniform California Earthquake Rupture Forecast, version 3 (UCERF3)—the time-independent model. Bull. Seismol. Soc. Am. 104, 1122–1180 (2014).

    Article  Google Scholar 

  43. Field, E. H. et al. A synoptic view of the third Uniform California Earthquake Rupture Forecast (UCERF3). Seismol. Res. Lett. 88, 1259–1267 (2017).

    Article  Google Scholar 

  44. Mackereth, F. J. H. A portable core sampler for lake deposits. Limnol. Oceanogr. 3, 181–191 (1958).

    Article  Google Scholar 

  45. Debret, M. et al. Spectrocolorimetric interpretation of sedimentary dynamics: the new ‘Q7/4 diagram’. Earth Sci. Rev. 109, 1–19 (2011).

    Article  Google Scholar 

  46. Sebag, D. et al. Coupled Rock-Eval pyrolysis and spectrophotometry for lacustrine sedimentary dynamics: application for west central African rainforests (Kamalete and Nguene lakes, Gabon). Holocene 23, 1173–1183 (2013).

    Article  Google Scholar 

  47. Baisden, W. T. et al. Rafter radiocarbon sample preparation and data flow: accommodating enhanced throughput and precision. Nucl. Instrum. Methods Phys. Res. B 294, 194–198 (2013).

    Article  Google Scholar 

  48. Fink, D. et al. The ANTARES AMS facility at ANSTO. Nucl. Instrum. Methods Phys. Res. B 223–224, 109–115 (2004).

    Article  Google Scholar 

  49. Hogg, A. G. et al. SHCal13 Southern Hemisphere Calibration, 0–50,000 years cal bp. Radiocarbon 55, 1889–1903 (2013).

    Article  Google Scholar 

  50. Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).

    Article  Google Scholar 

  51. Ramsey, C. B. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).

    Article  Google Scholar 

  52. Van Daele, M. et al. A revised classification and terminology for stacked and amalgamated turbidites in environments dominated by (hemi)pelagic sedimentation. Sediment. Geol. 357, 72–82 (2017).

    Article  Google Scholar 

  53. Van Daele, M. et al. A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: implications for quantitative lacustrine palaeoseismology. Sedimentology 62, 1466–1496 (2015).

    Article  Google Scholar 

  54. Ramsey, C. B. Development of the radiocarbon calibration program. Radiocarbon 43, 355–363 (2001).

    Article  Google Scholar 

  55. Clark, K. J. et al. Deriving a long paleoseismic record from a shallow-water Holocene basin next to the Alpine Fault, New Zealand. Geol. Soc. Am. Bull. 125, 811–832 (2013).

    Article  Google Scholar 

  56. Lienkaemper, J. J. & Bronk Ramsey, C. OxCal: versatile tool for developing paleoearthquake chronologies—a primer. Seismol. Res. Lett. 80, 431–434 (2009).

    Article  Google Scholar 

  57. Savage, J. C. Empirical earthquake probabilities from observed recurrence intervals. Bull. Seismol. Soc. Am. 84, 219–221 (1994).

    Article  Google Scholar 

  58. Biasi, G. P., Langridge, R. M., Berryman, K. R., Clark, K. J. & Cochran, U. A. Maximum‐likelihood recurrence parameters and conditional probability of a ground‐rupturing earthquake on the southern Alpine Fault, South Island, New Zealand. Bull. Seismol. Soc. Am. 105, 94–106 (2015).

    Article  Google Scholar 

  59. Dieterich, J. H. & Richards-Dinger, K. B. Earthquake recurrence in simulated fault systems. Pure Appl. Geophys. 167, 1087–1104 (2010).

    Article  Google Scholar 

  60. Shaw, B. E. et al. A physics-based earthquake simulator replicates seismic hazard statistics across California. Sci. Adv. 4, eaau0688 (2018).

    Article  Google Scholar 

  61. Allam, A. A., Kroll, K. A., Milliner, C. W. D. & Richards-Dinger, K. B. Effects of fault roughness on coseismic slip and earthquake locations. J. Geophys. Res. Solid Earth 124, 11336–11349 (2019).

    Article  Google Scholar 

  62. Barnes, P. M., Sutherland, R. & Delteil, J. Strike-slip structure and sedimentary basins of the southern Alpine Fault, Fiordland, New Zealand. Geol. Soc .Am. Bull. 117, 411–435 (2005).

    Article  Google Scholar 

  63. Langridge, R. M. et al. The New Zealand active faults database. New Zeal. J. Geol. Geophys. 59, 86–96 (2016).

    Article  Google Scholar 

  64. Niemeijer, A. R., Boulton, C., Toy, V. G., Townend, J. & Sutherland, R. Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: implications for deep rupture propagation. J. Geophys. Res. B 121, 624–647 (2016).

    Article  Google Scholar 

  65. Boulton, C. et al. Frictional properties of exhumed fault gouges in DFDP-1 cores, Alpine Fault, New Zealand. Geophys. Res. Lett. 41, 356–362 (2014).

    Article  Google Scholar 

  66. Chamberlain, C. J., Shelly, D. R., Townend, J. & Stern, T. A. Low-frequency earthquakes reveal punctuated slow slip on the deep extent of the Alpine Fault, New Zealand. Geochem. Geophys. Geosyst. 15, 2984–2999 (2014).

    Article  Google Scholar 

  67. Shaw, B. E. Beyond backslip: improvement of earthquake simulators from new hybrid loading conditions. Bull. Seismol. Soc. Am. 109, 2159–2167 (2019).

    Article  Google Scholar 

  68. Berryman, K. et al. The Alpine Fault, New Zealand: variation in Quaternary structural style and geomorphic expression. Ann. Tectonic. 6, 126–163 (1992).

    Google Scholar 

  69. Leitner, B., Eberhart-Phillips, D., Anderson, H. & Nabelek, J. L. A focused look at the Alpine Fault, New Zealand: seismicity, focal mechanisms, and stress observations. J. Geophys. Res. Solid Earth 106, 2193–2220 (2001).

    Article  Google Scholar 

  70. Boese, C. M., Townend, J., Smith, E. & Stern, T. Microseismicity and stress in the vicinity of the Alpine Fault, central Southern Alps, New Zealand. J. Geophys. Res. Solid Earth 117, https://doi.org/10.1029/2011JB008460 (2012).

Download references

Acknowledgements

The palaeoseismic work was funded through grants to J.D.H. from the Rutherford Foundation (RFTGNS1201-PD) and Earthquake Commission (EQC) (grant 14/669). Lake sediment cores were collected after consultation with Ngāi Tahu under Department of Conservation (DoC) research permit 38491-RES. We thank C. Boulton, D. Strong, L. Wallace, J. Dieterich, P. Upton, R. Hilton and K. Scharer for comments that improved the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Contributions

J.D.H. designed the study with input from N.C.B., S.J.F., K.R.-D. and R.S. The palaeoseismic data was generated and interpreted by J.D.H., S.J.F., K.R.B., U.A.C., K.J.C., R.M.L. and R.S. Earthquake simulation was conducted by K.R.-D. K.R.-D., J.D.H. and N.C.B. interpreted the simulations. Conditional probabilities were calculated by K.R.-D. and G.P.B. J.D.H. wrote the paper with notable input from N.C.B. and contributions from all the co-authors.

Corresponding author

Correspondence to Jamie D. Howarth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor(s): Rebecca Neely. Nature Geoscience thanks Michael Oskin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Tables 1–8 and Discussions 1–4.

Supplementary Video 1

Video of pre-event shear stress and co-seismic slip for Mw>6 earthquakes on the Alpine Fault simulated using RSQSim showing mode switching between single-and multi-section ruptures on the Central and South Westland sections.

Supplementary Video 2

Video of pre-event coulomb stress and co-seismic slip for Mw>6 earthquakes on the Alpine Fault simulated using RSQSim showing mode switching between single-and multi-section ruptures on the Central and South Westland sections.

Source data

Source Data Fig. 1

Bulk density data for the 1717 CE earthquake event sequence (EES) in lakes Paringa and Kaniere. 1717 CE EES age probability density functions for lakes Kaniere, Mapourika, Paringa and Ellery.

Source Data Fig. 2

Earthquake event sequence (EES) age probability density functions from lakes Kaniere, Mapourika, Paringa and Ellery.

Source Data Fig. 3

The timing of Mw>6 earthquakes on the Alpine Fault and the locations of hypocentres, northern termination and southern termination for earthquakes simulated in RSQSim parameterized with different elements of the Alpine Fault’s geometry and run for 33 kyr.

Source Data Fig. 4

The timing of Mw>6 earthquakes on the Alpine Fault and the locations of hypocentres, northern termination and southern termination for earthquakes simulated in RSQSim parameterized with realistic Alpine Fault geometry and run for 100 kyr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howarth, J.D., Barth, N.C., Fitzsimons, S.J. et al. Spatiotemporal clustering of great earthquakes on a transform fault controlled by geometry. Nat. Geosci. 14, 314–320 (2021). https://doi.org/10.1038/s41561-021-00721-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00721-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing