Skip to main content
Log in

Tracking the Tectonic Evolution of the Junggar-Balkhash Ocean: A Case Study from the Post-Collisional Takergan Pluton in the West Junggar, Xinjiang

  • Special Issue on Geo-Disasters
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Late Carboniferous and Early Permian igneous rocks are widely developed in the West Junggar, Xinjiang, which are considered to be related to the evolution of the Junggar-Balkhash Ocean. However, their tectonic settings have been controversial for a long time. With the aim of providing new evidence for the Late Paleozoic tectonic evolution of the West Junggar, we present petrology, zircon U-Pb chronology, whole-rock major and trace elemental and Sr-Nd isotopic data, to discuss the petrogenesis and tectonic setting of Takergan pluton from the Barleik Mountains in the West Junggar. The Takergan pluton is mainly composed of quartz diorite porphyry and quartz monzonite. The quartz diorite porphyry has low SiO2 (57.76 wt.%–57.81 wt.%), high total alkali contents (Na2O+K2O=6.29 wt.%–6.56 wt.%), and high Mg# values (45–46), with a zircon U-Pb age of 304±5 Ma. The quartz monzonite shows relatively high SiO2 (58.71 wt.%–64.71 wt.%), total alkali contents (7.73 wt.%–9.70 wt.%), and Mg# values (34–47), with the A/CNK values of 0.91–0.98, which belongs to shoshonitic and metaluminous I-type granite series. The quartz monzonite yields zircon U-Pb ages of 302±2 and 296±3 Ma, and is characterized by low initial Sr ratios of 0.703 97–0.704 09, high εNd(t) values of +6.8− +7.0, and young Nd model ages of 551–587 Ma. Both the quartz diorite porphyry and quartz monzonite are enriched in light rare earth elements and Rb, Th, U, K, and depleted in Nb, Ta, Ti, with different degrees of negative Eu anomalies. These features indicate that the Takergan pluton was most likely formed in a post-collisional setting by partial melting of a depleted mantle source that had been metasomatized by subduction-related fluids, with significant fractional crystallization and slightly contaminated by crustal materials. Combined with the widespread distribution of the coeval stitching plutons, the occurrences of terrestrial Late Carboniferous to Permian volcano-sedimentary formations, and the absence of subduction-related rocks later than Early Carboniferous, it is believed that the Junggar-Balkhash Ocean was closed at about 320 Ma, and the central West Junggar has transformed to a post-collisional environment during the Late Carboniferous and Early Permian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Bai, J. K., Chen, J. L., Tang, Z., et al., 2015. Redefinition of the Middle Devonian Kulumudi Formation in the South of Tiechanggou Town, West Junggar, Xinjiang and Its Geological Implications. Northwestern Geology, 48(3): 72–80 (in Chinese with English Abstract)

    Google Scholar 

  • Belousova, E., Griffin, W., O’Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7

    Article  Google Scholar 

  • Chen, B., Arakawa, Y, 2005. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta, 69(5): 1307–1320. https://doi.org/10.1016/j.gca.2004.09.019

    Article  Google Scholar 

  • Chen, S., Guo, Z. J., Pe-Piper, G., et al., 2013. Late Paleozoic Peperites in West Junggar, China, and How They Constrain Regional Tectonic and Palaeoenvironmental Setting. Gondwana Research, 23(2): 666–681. https://doi.org/10.1016/j.gr.2012.04.012

    Article  Google Scholar 

  • Chen, J. F., Han, B. F., Ji, J. Q., et al., 2010. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons in Northern West Junggar, North Xinjiang, China. Lithos, 115(1/2/3/4): 137–152. https://doi.org/10.1016/j.lithos.2009.11.014

    Article  Google Scholar 

  • Chen, J. F., Han, B. F., Zhang, L., et al., 2015. Middle Paleozoic Initial Amalgamation and Crustal Growth in the West Junggar (NW China): Constraints from Geochronology, Geochemistry and Sr-Nd-Hf-Os Isotopes of Calc-Alkaline and Alkaline Intrusions in the Xiemisitai-Saier Mountains. Journal of Asian Earth Sciences, 113: 90–109. https://doi.org/10.1016/j.jseaes.2014.11.028

    Article  Google Scholar 

  • Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691–703. https://doi.org/10.1016/s1367-9120(03)00118-4

    Article  Google Scholar 

  • Chen, Y., Sun, M. X., Zhang, X. L., 2006. SHRIMP U-Pb Dating of Zircons from Quartz Diorite at the Southeast Side of the Ba’erluke Fault, Western Junggar, Xinjiang, China. Geological Bulletin of China, 25(8): 992–994 (in Chinese with English Abstract)

    Google Scholar 

  • Coleman, R. G., 1989. Continental Growth of Northwest China. Tectonics, 8(3): 621–635. https://doi.org/10.1029/tc008i003p00621

    Article  Google Scholar 

  • Dong, S. F., Wang, J. L., Hu, Y., et al., 2016. Geochemistry, Geochronology and Metallogenic Significance of No. 2 Granitic Intrusion in Suyunhe Porphyry Molybdenum Deposit, Western Junggar. Mineral Exploration, 7(6): 891–903 (in Chinese with English Abstract)

    Google Scholar 

  • Du, H. Y., Chen, J. F., 2017. Determination on the Hoboksar Ancient Oceanic Basin in the West Junggar: The Evidence from Zircon U-Pb Age and Geochemistry of the Hoboksar Ophiolite. Acta Geologica Sinica, 91(12): 2638–2650 (in Chinese with English Abstract)

    Google Scholar 

  • Duan, F. H., Li, Y. J., Zhi, Q., et al., 2018. Geochemical Characteristics, Petrogenesis of the Sanukitic Dikes in the Miaoergou Area of West Junggar, Xinjiang, NW China and Their Geological Significance. Geotectonica et Metallogenia, 42(4): 759–776 (in Chinese with English Abstract)

    Google Scholar 

  • Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Gao, R., Xiao, L., Pirajno, F., et al., 2014. Carboniferous-Permian Extensive Magmatism in the West Junggar, Xinjiang, Northwestern China: Its Geochemistry, Geochronology, and Petrogenesis. Lithos, 204: 125–143. https://doi.org/10.1016/j.lithos.2014.05.028

    Article  Google Scholar 

  • Geng, H. Y, Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction?. Chemical Geology, 266(3/4): 364–389. https://doi.org/10.1016/j.chemgeo.2009.07.001

    Article  Google Scholar 

  • Gu, P. Y., Li, Y. J., Wang, X. G., et al., 2011. Geochemical Evidences and Tectonic Significances of Dalabute SSZ-Type Ophiolitic Mélange, Western Junggar Basin. Geological Review, 57(1): 36–44 (in Chinese with English Abstract)

    Google Scholar 

  • Han, B. F., Guo, Z. J., He, G. Q., 2010a. Timing of Major Suture Zones in North Xinjiang, China: Constraints from Stitching Plutons. Acta Petrologica Sinica, 26(8): 2233–2246 (in Chinese with English Abstract)

    Google Scholar 

  • Han, B. F., Guo, Z. J., Zhang, Z. C., et al., 2010b. Age, Geochemistry, and Tectonic Implications of a Late Paleozoic Stitching Pluton in the North Tian Shan Suture Zone, Western China. Geological Society of America Bulletin, 122(3/4): 627–640. https://doi.org/10.1130/b26491.1

    Article  Google Scholar 

  • Han, B. F., He, G. Q., Wang, S. G., et al., 1998. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xinjiang. Geological Review, 44(4): 396–406 (in Chinese with English Abstract)

    Google Scholar 

  • Han, B. F., Ji, J. Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part I): Timing of Post-Collisional Plutonism. Acta Petrologica Sinica, 22(5): 1077–1086 (in Chinese with English Abstract)

    Google Scholar 

  • He, X. X., Xiao, L., Wang, G. C., 2015. Petrogenesis and Geological Implications of Late Paleozoic Intermediate-Basic Dyke Swarms in Western Junggar. Earth Science—Journal of China University of Geosciences, 40(5): 777–796 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Hu, Y., Wang, J. L., Wang, J. Q., et al., 2018a. Origin of the Shiwu Pluton in Barluk Region, Xinjiang: Zircon U-Pb Chronological, Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints. Acta Petrologica Sinica, 34(3): 601–617 (in Chinese with English Abstract)

    Google Scholar 

  • Hu, Y., Wang, J. L., Wang, J. Q., et al., 2018b. Geochemistry and Geochronology of the Granodiorite in Jiamantieliek Pluton, Barluk Region, Xinjiang. Chinese Journal of Geology, 53(2): 594–614 (in Chinese with English Abstract)

    Google Scholar 

  • Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055

    Article  Google Scholar 

  • Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1/2): 181–193. https://doi.org/10.1017/s0263593300007367

    Article  Google Scholar 

  • le Bas, M. J., le Maitre, R.W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750. https://doi.org/10.1093/petrology/27.3.745

    Article  Google Scholar 

  • Li, C. F., Li, X. H., Li, Q. L., et al., 2012. Rapid and Precise Determination of Sr and Nd Isotopic Ratios in Geological Samples from the Same Filament Loading by Thermal Ionization Mass Spectrometry Employing a Single-Step Separation Scheme. Analytica Chimica Acta, 727: 54–60. https://doi.org/10.1016/j.aca.2012.03.040

    Article  Google Scholar 

  • Li, D., He, D. F., Qi, X. F., et al., 2015. How was the Carboniferous Balkhash-West Junggar Remnant Ocean Filled and Closed? Insights from the Well Tacan-1 Strata in the Tacheng Basin, NW China. Gondwana Research, 27(1): 342–362. https://doi.org/10.1016/j.gr.2013.10.003

    Article  Google Scholar 

  • Li, Y. J., Xu, Q., Liu, J., et al., 2016. Redefinition and Geological Significance of Jiamuhe Formation in Hala’alate Mountain of West Junggar, Xinjiang. Earth Science, 41(9): 1479–1488 (in Chinese with English Abstract)

    Google Scholar 

  • Lin, W., Sun, P., Xue, Z. H., et al., 2017. Structural Analysis of Late Paleozoic Deformation of Central Dalabute Fault Zone, West Junggar, China. Acta Petrologica Sinica, 33(10): 2987–3001 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, B., Han, B. F., Chen, J. F., et al., 2017a. Closure Time of the Junggar-Balkhash Ocean: Constraints from Late Paleozoic Volcano-Sedimentary Sequences in the Barleik Mountains, West Junggar, NW China. Tectonics, 36(12): 2823–2845. https://doi.org/10.1002/2017tc004606

    Article  Google Scholar 

  • Liu, B., Han, B. F., Ren, R., et al., 2017b. Petrogenesis and Tectonic Implications of the Early Carboniferous to the Late Permian Barleik Plutons in the West Junggar (NW China). Lithos, 272/273: 232–248. https://doi.org/10.1016/j.lithos.2016.12.027

    Article  Google Scholar 

  • Liu, B., Han, B. F., Gong, E. P., et al., 2019. The Tectono-Magmatic Evolution of the West Junggar Terrane (NW China) Unravelled by U-Pb Ages of Detrital Zircons in Modern River Sands. International Geology Review, 61(5): 607–621. https://doi.org/10.1080/00206814.2018.1440647

    Article  Google Scholar 

  • Liu, B., Han, B. F., Ren, R., et al., 2020. Late Carboniferous to Early Permian Adakitic Rocks and Fractionated I-Type Granites in the Southern West Junggar Terrane, NW China: Implications for the Final Closure of the Junggar-Balkhash Ocean. Geological Journal, 55: 1728–1749. https://doi.org/10.1002/gj.3508

    Article  Google Scholar 

  • Ludwig, K. R., 2003. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley

    Google Scholar 

  • Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120–125. https://doi.org/10.1002/(sici)1096-9837(199612)21:12<1163::aid-esp66>3.3.co

    Article  Google Scholar 

  • Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. https://doi.org/10.1007/bf00375192

    Article  Google Scholar 

  • Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745

    Article  Google Scholar 

  • Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8–32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891–931. https://doi.org/10.1093/petrology/36.4.891

    Article  Google Scholar 

  • Ren, R., Han, B. F., Xu, Z., et al., 2014. When did the Subduction First Initiate in the Southern Paleo-Asian Ocean: New Constraints from a Cambrian Intra-Oceanic Arc System in West Junggar, NW China. Earth and Planetary Science Letters, 388: 222–236. https://doi.org/10.1016/j.epsl.2013.11.055

    Article  Google Scholar 

  • Roeder, P. L., Emslie, R. F., 1970. Olivine-Liquid Equilibrium. Contributions to Mineralogy and Petrology, 29(4): 275–289. https://doi.org/10.1007/bf00371276

    Article  Google Scholar 

  • Şengör, A. M. C., Natal’in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299–307. https://doi.org/10.1038/364299a0

    Article  Google Scholar 

  • Shen, P., Shen, Y. C., Li, X. H., et al., 2012. Northwestern Junggar Basin, Xiemisitai Mountains, China: A Geochemical and Geochronological Approach. Lithos, 140/141: 103–118. https://doi.org/10.1016/j.lithos.2012.02.004

    Article  Google Scholar 

  • Shen, P., Xiao, W. J., Pan, H. D., et al., 2013. Petrogenesis and Tectonic Settings of the Late Carboniferous Jiamantieliek and Baogutu Ore-Bearing Porphyry Intrusions in the Southern West Junggar, NW China. Journal of Asian Earth Sciences, 75: 158–173. https://doi.org/10.1016/j.jseaes.2013.07.024

    Article  Google Scholar 

  • Su, Y. P., Tang, H. F., Hou, G. S., et al., 2006. Geochemistry of Aluminous A-Type Granites along Darabut Tectonic Belt in West Junggar, Xinjiang. Geochimica, 35(1): 55–67 (in Chinese with English Abstract)

    Google Scholar 

  • Sun, H., Xu, Y., Han, B. F., et al., 2020. Changes in Sedimentary Environments and Provenances of the Carboniferous-Lower Permian in Ashelekuoerlesi Area, West Junggar. Geological Bulletin of China, 39(07): 963–982 (in Chinese with English Abstract)

    Google Scholar 

  • Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  • Tang, G. J., Wang, Q., Wyman, D. A., et al., 2010. Ridge Subduction and Crustal Growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous Adakites and High-Mg Diorites in the Western Junggar Region, Northern Xinjiang (West China). Chemical Geology, 277(3/4): 281–300. https://doi.org/10.1016/j.chemgeo.2010.08.012

    Article  Google Scholar 

  • Tang, G. J., Wyman, D. A., Wang, Q., et al., 2012. Asthenosphere-Lithosphere Interaction Triggered by a Slab Window during Ridge Subduction: Trace Element and Sr-Nd-Hf-Os Isotopic Evidence from Late Carboniferous Tholeiites in the Western Junggar Area (NW China). Earth and Planetary Science Letters, 329/330: 84–96. https://doi.org/10.1016/j.epsl.2012.02.009

    Article  Google Scholar 

  • Tian, Z. X., Yan, J., Li, Y. J., et al., 2013. LA-ICP-MS Zircon U-Pb Age, Geochemistry and Tectonic Setting of the Volcanic Rocks in the Heishantou Formation from the Area of Barleik, West Junggar. Acta Petrologica Sinica, 87(3): 343–352 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, G. C., Zhang, P., 2019. A New Understanding on the Ophiolitic Mélanges and Its Tectonic Significance: Insights from the Structural Analysis of the Remnant Oceanic Basin-Type Ophiolitic Mélanges. Earth Science, 44(5): 1688–1704 (in Chinese with English Abstract)

    Google Scholar 

  • Wei, W., Pang, X. Y., Wang, Y., et al., 2009. Sediment Facies, Provenance Evolution and Their Implications for the Lower Devonian to Lower Carboniferous in Shaerbuerti Mountain in North Xinjiang. Acta Petrologica Sinica, 25(3): 689–698 (in Chinese with English Abstract)

    Google Scholar 

  • Wen, Z. G., Zhao, W. P., Liu, T. F., et al., 2016. Formation Age and Geotectonic Significance of Baerluke Ophiolite in West Junggar, Xinjiang. Geological Bulletin of China, 35(9): 1401–1410 (in Chinese with English Abstract)

    Google Scholar 

  • Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202

    Article  Google Scholar 

  • Wilson, M. B., 1989. Igneous Petrogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6788-4

    Book  Google Scholar 

  • Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-76492006-022

    Article  Google Scholar 

  • Xiao, W. J., Huang, B. C., Han, C. M., et al., 2010. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2/3): 253–273. https://doi.org/10.1016/j.gr.2010.01.007

    Article  Google Scholar 

  • Xu, S. L., Chen, X. H., Li, Y. D., et al., 2020. The Latest Magma Intrusion Activities in the West Junggar: Constraints from the Early Permian-Early Triassic Jietebutiao Pluton. Acta Petrologica Sinica, 94(4): 1067–1090 (in Chinese with English Abstract)

    Google Scholar 

  • Xu, X., He, G. Q., Li, H. Q., et al., 2006. Basic Characteristics of the Karamay Ophiolitic Mélange, Xinjiang, and Its Zircon SHRIMP Dating. Geology in China, 33(3): 470–475 (in Chinese with English Abstract)

    Google Scholar 

  • Xu, X., Zhou, K. F., Wang, Y., 2010. Study on Extinction of the Remnant Oceanic Basin and Tectonic Setting of West Junggar during Late Paleozoic. Acta Petrologica Sinica, 26(11): 3206–3214 (in Chinese with English Abstract)

    Google Scholar 

  • Xu, Z., Han, B. F., Ren, R., et al., 2012. Ultramafic-Mafic Mélange, Island Arc and Post-Collisional Intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic Intra-Oceanic Subduction-Accretion Process. Lithos, 132/133: 141–161. https://doi.org/10.1016/j.lithos.2011.11.016

    Article  Google Scholar 

  • Xu, Z., Han, B. F., Ren, R., et al., 2013. Palaeozoic Multiphase Magmatism at Barleik Mountain, Southern West Junggar, Northwest China: Implications for Tectonic Evolution of the West Junggar. International Geology Review, 55(5): 633–656. https://doi.org/10.1080/00206814.2012.741315

    Article  Google Scholar 

  • Yang, G. X., Li, Y. J., Santosh, M., et al., 2012. A Neoproterozoic Seamount in the Paleoasian Ocean: Evidence from Zircon U-Pb Geochronology and Geochemistry of the Mayile Ophiolitic Mélange in West Junggar, NW China. Lithos, 140/141: 53–65. https://doi.org/10.1016/j.lithos.2012.01.026

    Article  Google Scholar 

  • Yang, G. X., Li, Y. J., Santosh, M., et al., 2013. Geochronology and Geochemistry of Basalts from the Karamay Ophiolitic Melange in West Junggar (NW China): Implications for Devonian-Carboniferous Intra-Oceanic Accretionary Tectonics of the Southern Altaids. Geological Society of America Bulletin, 125(3/4): 401–419. https://doi.org/10.1130/b30650.1

    Article  Google Scholar 

  • Yang, M., Wang, J. L., Wang, J. Q., et al., 2015. Late Carboniferous Intra-Oceanic Subduction and Mineralization in Western Junggar: Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of I# Ore-Bearing Granite Body in Suyunhe Molybdenite Orefield, Xinjiang. Acta Petrologica Sinica, 31(2): 523–533 (in Chinese with English Abstract)

    Google Scholar 

  • Yang, Y. Q., Zhao, L., Zheng, R. G., et al., 2019. Evolution of the Early Paleozoic Hongguleleng-Balkybey Ocean: Evidence from the Hebukesaier Ophiolitic Mélange in the Northern West Junggar, NW China. Lithos, 324/325: 519–536. https://doi.org/10.1016/j.lithos.2018.11.029

    Article  Google Scholar 

  • Yin, J. Y., Yuan, C., Sun, M., et al., 2010. Late Carboniferous High-Mg Dioritic Dikes in Western Junggar, NW China: Geochemical Features, Petrogenesis and Tectonic Implications. Gondwana Research, 17(1): 145–152. https://doi.org/10.1016/j.gr.2009.05.011

    Article  Google Scholar 

  • Yin, J. Y., Yuan, C., Sun, M., et al., 2012. Age, Geochemical Features and Possible Petrogenesis Mechanism of Early Permian Magnesian Diorite in Hatu, Xinjiang. Acta Petrologica Sinica, 28(7): 2171–2182 (in Chinese with English Abstract)

    Google Scholar 

  • Yu, Z. Q., Liu, B., Hong, Y. B. H., 2021. Zircon U-Pb Age and Geochemistry of the Granitic Porphyry from the Baibuxie River of the West Junggar, Xinjiang, and Its Tectonic Significance. Geological Journal of China Universities, 27(1): 80–93 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang Y. Y., Guo, Z. J., 2010. New Constraints on Formation Ages of Ophiolites in Northern Junggar and Comparative Study on Their Connection. Acta Petrologica Sinica, 26(2): 421–430 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, P., Wang, G. C., Shen, T. Y., et al., 2021. Paleozoic Convergence Processes in the Southwestern Central Asian Orogenic Belt: Insights from U-Pb Dating of Detrital Zircons from West Junggar, Northwestern China. Geoscience Frontiers, 12(2): 531–548. https://doi.org/10.1016/j.gsf.2020.07.015

    Article  Google Scholar 

  • Zhao, Z. F., Dai, F. Q., Chen, Q., 2019. Continental Slab-Mantle Interaction: Geochemical Evidence from Post-Collisional Andesitic Rocks in the Dabie Orogen. Earth Science, 44(12): 4119–4127 (in Chinese with English Abstract)

    Google Scholar 

  • Zheng, B., Han, B. F., Liu, B., et al., 2019. Ediacaran to Paleozoic Magmatism in West Junggar Orogenic Belt, NW China, and Implications for Evolution of Central Asian Orogenic Belt. Lithos, 338/339: 111–127. https://doi.org/10.1016/j.lithos.2019.04.017

    Article  Google Scholar 

  • Zheng, B., Han, B. F., Wang, Z. Z., et al., 2020. An Example of Phanerozoic Continental Crustal Growth: The West Junggar Orogenic Belt, Northwest China. Lithos, 376/377: 105745. https://doi.org/10.1016/j.lithos.2020.105745

    Article  Google Scholar 

  • Zhong, S. H., Shen, P., Pan, H. D., et al., 2015. Geochemistry and Geochronology of Ore-Bearing Granites in Suyunhe Mo Deposit, West Junggar, Xinjiang. Minerals Deposits, 34(1): 39–62 (in Chinese with English Abstract)

    Google Scholar 

  • Zhu, Y. F., Chen, B., Qiu, T., 2015. Geology and Geochemistry of the Baijiantan-Baikouquan Ophiolitic Mélanges: Implications for Geological Evolution of West Junggar, Xinjiang, NW China. Geological Magazine, 152(1): 41–69. https://doi.org/10.1017/s0016756814000168

    Article  Google Scholar 

  • Zhu, Y. F., Xu, X., 2006. The Discovery of Early Ordovician Ophiolitic Mélanges in Taerbahatai Mts., Xinjiang, NW China. Acta Petrologica Sinica, 22(12): 2833–2842 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers who provided constructive comments and suggestions which greatly improved the manuscript. Prof. Bao-Fu Han (Peking University) is gratefully thanked for clarifying discussions. Chen He (Nanjing University) and Jia-Wei Li (Northeastern University) are acknowledged for help during the fieldwork. This work was supported by the National Natural Science Foundation of China (No. 41802236), “the Fundamental Research Funds for the Central Universities” (No. N182410001), and the National Training Program of Innovation and Entrepreneurship for Undergraduates (No. 2019101450049). The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1373-z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Electronic Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Liu, B. Tracking the Tectonic Evolution of the Junggar-Balkhash Ocean: A Case Study from the Post-Collisional Takergan Pluton in the West Junggar, Xinjiang. J. Earth Sci. 32, 1250–1261 (2021). https://doi.org/10.1007/s12583-020-1373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-020-1373-z

Key Words

Navigation