Skip to main content
Log in

Capacitance matching by optimizing the geometry of a ferroelectric HfO2-based gate for voltage amplification

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The voltage amplification of a ferroelectric layer was studied for advanced complementary metal–oxide–semiconductor (CMOS) applications. To match the capacitance for negative-capacitance field-effect transistors (NC-FETs), a method of adjusting the MOS capacitance is proposed by optimizing the width (W) and height/depth (H) in two types of ferroelectric gate-stack 2D metal-oxide semiconductor capacitor (MOSCAP) structures: a fin-like structure and a trench structure. The capacitance of the semiconductor was modeled to match that of the ferroelectric films to obtain hysteresis-free operation (ΔVT = VT, for –VT,rev ~ 0) and achieve voltage amplification (AV). The optimized conditions are found to be H = 19.3 nm and 24.3 nm to achieve the criterion with AV > 50 for the fin-like and trench structure, respectively. Subsequently, the structure was extended to a three-dimensional (3D) fin-shaped field-effect transistor (FinFET) to evaluate the effects of varying geometrical parameters such as the fin spacing (FS). Tuning FS can not only enhance the on-current but also decrease the subthreshold swing in the off-current region. For the FET, the use of the optimum FS value of 30 nm helps the FinFETs achieve capacitance matching with AV > 30. The subthreshold swing of the NC-FinFET is improved by about 47% for HFinFET/WFinFET ~ 3 and Fs/HFinFET ~ 1.2 as compared with the conventional FinFET. The concept of coupling the polarized Hf-based oxide in NC-FETs that is demonstrated to be feasible herein is thus practicable using current CMOS architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Müller, J., Böscke, T.S., Schröder, U., Mueller, S., Bräuhaus, D., Böttger, U., Frey, L., Mikolajick, T.: Ferroelectricity in simple binary ZrO2 and HfO2. NanoLetters 12(8), 4318–4323 (2012)

    Article  Google Scholar 

  2. Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. NanoLetters 8(2), 405–410 (2008)

    Article  Google Scholar 

  3. Salahuddin, S., Datta, S.: Can the subthreshold swing in a classical FET be lowered below 60 mV/decade? IEDM Tech. Dig. (2008). https://doi.org/10.1109/IEDM.2008.4796789

    Article  Google Scholar 

  4. Lee, M.H., Chen, P.-G., Liu, C., Chu, K-Y., Cheng, C.-C., Xie, M.-J., Liu, S.-N., Lee, J.-W., Huang, S.-J., Liao, M.-H., Tang, M., Li, K.-S., Chen, M.-C.: Prospects for ferroelectric HfZrOx FETs with experimentally CET = 0.98 nm, SSfor = 42 mV/dec, SSrev = 28 mV/dec, Switch-OFF < 0.2 V, and hysteresis-free strategies. IEDM Tech. Dig. (2015). https://doi.org/10.1109/IEDM.2015.7409759

  5. Zhou, J., Wu, J., Han, G., Kanyang, R., Peng, Y., Li, J., Wang, H., Liu, Y., Zhang, J., Sun, Q.-Q., Zhang, D.W., Hao, Y.: Frequency dependence of performance in Ge negative capacitance PFETs achieving sub-30 mV/decade swing and 110 mV hysteresis at MHz. IEDM Tech. Dig. (2017). https://doi.org/10.1109/IEDM.2017.8268397

    Article  Google Scholar 

  6. Si, M., Jiang, C., Su, C.-J., Tang, Y.-T., Yang, L., Chung, W., Alam, M.A., Ye, P.D.: Sub-60 mV/dec Ferroelectric HZO MoS2 negative capacitance field-effect transistor with internal metal gate: the role of parasitic capacitance. IEDM Tech. Dig. (2017). https://doi.org/10.1109/IEDM.2017.8268447

    Article  Google Scholar 

  7. Khan, A.I., Bhowmik, D., Yu, P., Kim, S.J., Pan, X., Ramesh, R., Salahuddin, S.: Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99(11), 113501 (2011)

    Article  Google Scholar 

  8. Lee, M.H., Fan, S.-T., Tang, C.-H., Chen, P.-G., Chou, Y.-C., Chen, H.-H., Kuo, J.-Y., Xie, M.-J., Liu, S.-N., Liao, M.-H., Jong, C.-A., Li, K.-S., Chen, M.-C., Liu, C.W.: Physical thickness 1.x nm ferro electric HfZrOx negative capacitance FETs. IEDM Tech. Dig. (2016). https://doi.org/10.1109/IEDM.2016.7838400

    Article  Google Scholar 

  9. Li, K.-S., Chen, P.-G., Lai, T.-Y., Lin, C.-H., Cheng, C.-C., Chen, C.-C., Wei, Y.-J., Hou, Y.-F., Liao, M.-H., Lee, M.-H., Chen, M.-C., Sheih, J.-M., Yeh, W., Yang, F.-L., Salahuddin, S., Hu, C.: Sub-60 mV-swing negative-capacitance FinFET without hysteresis. IEDM Tech. Dig. (2015). https://doi.org/10.1109/IEDM.2015.7409760

    Article  Google Scholar 

  10. Krivokapic, Z., Rana, U., Galatage, R., Razavieh, A., Aziz, A., Liu, J., Shi, J., Kim, H.J., Sporer, R., Serrao, C., Busquet, A., Polakowski, P., Müller, J., Kleemeier, W., Jacob, A., Brown, D., Knorr, A., Carter, R., Banna, S.: 14 nm ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications. IEDM Tech. Dig. (2017). https://doi.org/10.1109/IEDM.2017.8268393

    Article  Google Scholar 

  11. Si, M., Su, C.-J., Jiang, C., Conrad, N.J., Zhou, H., Maize, K.D., Qiu, G., Wu, C.-T., Shakouri, A., Alam, M.A., Ye, P.D.: Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 13, 24–28 (2018). https://doi.org/10.1038/s41565-017-0010-1

    Article  Google Scholar 

  12. Lee, M.H., Chen, K.-T., Liao, C.-Y., Gu, S.-S., Siang, G.-Y., Chou, Y.-C., Chen, H.-Y., Le, J., Hong, R.-C., Wang, Z.-Y., Chen, S.-Y., Chen, P.-G., Tang, M., Lin, Y.-D., Lee, H.-Y., Li, K.-S., Liu, C.W.: Extremely steep switch of negative-capacitance nanosheet GAA-FETs and FinFETs. IEDM Tech. Dig. (2018). https://doi.org/10.1109/IEDM.2018.8614510

    Article  Google Scholar 

  13. Liu, C., Chen, P.-G., Xie, M.-J., Liu, S.-N., Lee, J.-W., Huang, S.-J., Liu, S., Chen, Y.-S., Lee, H.-Y., Liao, M.-H., Chen, P.-S., Lee, M.-H.: Simulation-based study of negative capacitance double gate tunnel field effect transistor with ferroelectric gate stack. Jpn. J. Appl. Phys. 55, 04EB08 (2016)

    Article  Google Scholar 

  14. Chen, K.-T., Gu, S.-S., Wang, Z.-Y., Liao, C.-Y., Chou, Y.-C., Hong, R.-C., Chen, S.-Y., Chen, H.-Y., Siang, G.-Y., Le, J., Chen, P.-G., Liao, M.-H., Li, K.-S., Chang, S.T., Lee, M.H.: Ferroelectric HfZrOx FETs on SOI substrate with reverse-DIBL (drain-induced barrier lowering) and NDR (negative differential resistance). IEEE J. Electron. Dev. Soc. 6, 900–904 (2018)

    Article  Google Scholar 

  15. You, W.-X., Tsai, C.-P., Su, P.: Short-channel effects in 2D negative-capacitance field-effect transistors. IEEE Trans. Electron. Dev. 65, 1604–1610 (2018)

    Article  Google Scholar 

  16. Ota, H., Ikegami, T., Hattori, J., Fukuda, K., Migita, S., Toriumi, A.: Fully coupled 3-D device simulation of negative capacitance FinFETs for sub 10 nm integration. IEDM Tech. Dig. (2016). https://doi.org/10.1109/IEDM.2016.7838403

    Article  Google Scholar 

  17. Agarwal, H., Kushwaha, P., Lin, Y.-K., Kao, M.-Y., Liao, Y.-H., Dasgupta, A., Salahuddin, S., Hu, C.: Proposal for capacitance matching in negative capacitance field-effect transistors. IEEE Electron. Dev. Lett. 40, 463–466 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the computing support received by the National Center for High-Performance Computing (NCHC), Taiwan.

Funding

This research was funded by the Ministry of Science and Technology (MOST 109-2218-E-003-003, MOST 109-2622-8-002-003, and MOST 109-2221-E-005-016).

Author information

Authors and Affiliations

Authors

Contributions

KTC designed the overall architecture and contributed to the implementation and deployment of this work. KYH and CYL focused on the analysis of the results. SHC and FCH were mainly involved in the simulations. JHL, SHC, and HL focused on processing the results. STC was a consultant for this work. MHL was responsible for proposing the research topic, project administration, funding acquisition, reviewing the work, and preparation of the paper.

Corresponding authors

Correspondence to S. T. Chang or M. H. Lee.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, KT., Hsiang, KY., Liao, CY. et al. Capacitance matching by optimizing the geometry of a ferroelectric HfO2-based gate for voltage amplification. J Comput Electron 20, 1209–1215 (2021). https://doi.org/10.1007/s10825-021-01701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01701-y

Keywords

Navigation