Skip to main content
Log in

Reduction and coherent states

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We apply a quantum version of dimensional reduction to Gaussian coherent states in Bargmann space to obtain squeezed states on complex projective spaces. This leads to a definition of a family of squeezed spin states (Definition 1.13) with excellent semiclassical properties, governed by a symbol calculus. We prove semiclassical norm estimates and a propagation result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We thank one of the referees for this observation.

References

  1. Bleher, P., Shiffman, B., Zelditch, S.: Universality and scaling of correlations between zeros on complex manifolds. Invent. Math. 142(2), 351–395 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bloch, A., Golse, F., Paul, T., Uribe, A.: Dispersionless toda and toeplitz operators. Duke Math. J. 17(1), 157–196 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Bochner, S.: Curvature in Hermitian metric. Bull. Am. Math. Soc. 53, 179–195 (1947)

    Article  MathSciNet  Google Scholar 

  4. Boutet de Monvel, L., Guillemin, V.: The Spectral Theory of Toeplitz Operators Volume 99 of Annals of Mathematics Studies. Princeton University Press, University of Tokyo Press, Princeton, NY, Tokyo (1981)

    MATH  Google Scholar 

  5. Charles, L.: Toeplitz operators and Hamiltonian torus actions. J. Funct. Anal. 236(1), 299–350 (2006)

    Article  MathSciNet  Google Scholar 

  6. Combescure, M., Robert, D.: Robert Coherent States and Applications in Mathematical Physics. Springer, Berlin (2012)

    Book  Google Scholar 

  7. Daubechies, I.: Coherent states and projective representation of the linear canonical transformations. J. Math. Phys. 21(6), 1377–1389 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  8. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  9. Guillemin, V., Sternberg, S.: Geometric quantization and multiplicities of group representations. Invent. Math. 67, 515–538 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  10. Guillemin, V., Uribe, A., Wang, Z.: Semiclassical states associated with isotropic submanifolds of phase space. Lett. Math. Phys. 106, 1695–1728 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hall, B.C., Kirwin, W.D.: Unitarity in “quantization commutes with reduction”. Commun. Math. Phys. 275(2), 401–422 (2007)

    Article  MathSciNet  Google Scholar 

  12. Hörmander, L.: The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Springer, Berlin (1990)

    MATH  Google Scholar 

  13. Ma, X, Zhang, W: Bergman kernels and symplectic reduction. Astérisque, No. 318, viii+154 pp. ISBN: 978-2-85629-255-6 (2008)

  14. Ma, X., Zhang, W.: Geometric quantization for proper moment maps: the Vergne conjecture. Acta Math. 212(1), 11–57 (2014)

    Article  MathSciNet  Google Scholar 

  15. Rawnsley, J.H.: Coherent states and Kähler manifolds. Quart. J. Math. Oxford Ser. (2) 28(112), 403–415 (1977)

    Article  MathSciNet  Google Scholar 

  16. Ruan, W.-D.: Canonical coordinates and Bergmann [Bergman] metrics. Commun. Anal. Geom. 6(3), 589–631 (1998)

    Article  MathSciNet  Google Scholar 

  17. Zelditch, S., Zhou, P.: Central limit theorem for spectral partial Bergman kernels. Geom. Topol. 23(4), 1961–2004 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to thank Eva Maria Graefe for calling our attention to the problem of systematically constructing squeezed SU(2) coherent states, and to her and Robert Littlejohn for useful discussions during an IMA workshop in the summer of 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Uribe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Propagation of coherent states in Bargmann space

Appendix A. Propagation of coherent states in Bargmann space

Here, we sketch a derivation of a theorem on the propagation of Gaussian coherent states in Bargmann space. We follow the approach of [6], Chapter 4.

1.1 A.1. Translations

Let \(a = (a_1,\ldots , a_N)\) and \(a^* = (a_1^*,\ldots , a_N^*)\) be the (vectors of the) creation and annihilation operators. In Bargmann space, these are

$$\begin{aligned} a_j = \hbar \frac{\partial \ }{\partial z_j}\quad \text {and}\quad a_j^* = \text {multiplication by } z_j. \end{aligned}$$

It is clear that \([a_j, a^*_k] = \delta _{jk}\hbar \, I.\) The position and momentum operators are

$$\begin{aligned} {\widehat{Q}} := \frac{1}{\sqrt{2}} (a^* +a) , \qquad {\widehat{P}} := \frac{i}{\sqrt{2}} (a^* -a). \end{aligned}$$

Then, the quantum translation by w (or Weyl operator)

$$\begin{aligned} {\widehat{T}}_w = \exp \left( i\hbar ^{-1}\left[ p\cdot {\widehat{Q}}- q\cdot {\widehat{P}}\right] \right) , \end{aligned}$$
(99)

where \(w = \frac{1}{\sqrt{2}}(q-ip)\) and \(\hbar = 1/k\), is \({\widehat{T}}_w = e^{\hbar ^{-1}\left( \overline{w}\cdot a^* - w\cdot a\right) }\), which can be seen to be equal to

$$\begin{aligned} {\widehat{T}}_w = e^{-|w|^2/2\hbar } e^{\hbar ^{-1}\overline{w}\cdot a^*}e^{-\hbar ^{-1}w\cdot a}. \end{aligned}$$
(100)

This is equivalent to \({\widehat{T}}_w(f)(z) = e^{-|w|^2/2\hbar } e^{z\overline{w}/\hbar } f(z-w)\), an expression we have used before.

Let \(t\mapsto w(t)\) be any smooth curve. Below, it will be necessary to have a formula for \(\frac{d\ }{\mathrm{d}t}{\widehat{T}}_{w(t)}\).

Lemma A.1

$$\begin{aligned} \frac{d\ }{\mathrm{d}t}{\widehat{T}}_{w(t)}= \hbar ^{-1}{\widehat{T}}_{w(t)}\left[ \frac{1}{2} \left( w\cdot \dot{\overline{w}}- {\dot{w}}\cdot \overline{w}\right) + \dot{\overline{w}}\cdot a^*- {\dot{w}}\cdot a\right] . \end{aligned}$$
(101)

Proof

We will use (100). By the product rule, we get the sum of three terms, one for each factor. The derivative of the middle factor is

$$\begin{aligned} \frac{\mathrm{d}\ }{\mathrm{d}t} e^{\hbar ^{-1}\overline{w}\cdot a^*} = \hbar ^{-1}e^{\hbar ^{-1}\overline{w}\cdot a^*} \dot{\overline{w}}\cdot a^*. \end{aligned}$$

We want to commute \(\dot{\overline{w}}\cdot a^*\) with the third factor. One can show that

$$\begin{aligned} \left[ \dot{\overline{w}}\cdot a^*, e^{-\hbar ^{-1}w\cdot a} \right] =( w\cdot \dot{\overline{w}}) e^{-\hbar ^{-1}w\cdot a}. \end{aligned}$$
(102)

Collecting terms, we get that the left-hand side of (101) is

$$\begin{aligned} \hbar ^{-1}{\widehat{T}}_w \left[ -\frac{1}{2} \left( {\dot{w}}\cdot \overline{w}+ w\cdot \dot{\overline{w}} \right) + w\cdot \dot{\overline{w}} + \dot{\overline{w}}\cdot a^* - {\dot{w}}\cdot a \right] . \end{aligned}$$

\(\square \)

We will also need:

Lemma A.2

The translation operator acts on the annihilation and creation operators in the following manner:

$$\begin{aligned} {\widehat{T}}_w \, a \, {\widehat{T}}_w^{-1}&= a -\overline{w}I \\ {\widehat{T}}_w \, a^* \, {\widehat{T}}_w^{-1}&= a^* -w I. \end{aligned}$$

The proof follows directly by calculating \(\left( {\widehat{T}}_w \, a \, {\widehat{T}}_w^{-1} \right) (f)(z) \) using (100). The formula for the creation operator is found by taking conjugates.

1.2 A.2. Quadratic Hamiltonians and Mp representation

The most general quadratic quantum Hamiltonian in \({\mathbb C}^N\) obtained by Weyl quantization is given by

$$\begin{aligned} {\widehat{{\mathcal Q}}} = a^* R (a^*)^T + a^* S a^T + \hbar \frac{{\text{ Tr }}(S)}{2} + a {\bar{R}} a^T, \end{aligned}$$
(103)

where

\(\hbar = 1/k\) and R and S are \(N \times N\) complex matrices with \(R^T = R\) and \({\bar{S}}^T=S\). This operator acts on \(\psi (z) =f(z)e^{-k|z|^2/2}\) by acting on f. The corresponding classical Hamiltonian (the principal symbol of \({\widehat{{\mathcal Q}}}\)) is the real quadratic form

$$\begin{aligned} {\mathcal Q}(z) =2\mathfrak {R}( zRz^T) + \overline{z}S z^T. \end{aligned}$$
(104)

Let \(A\in {\mathcal D}_N\). We will take R and S to be time dependent (this is needed below). We are interested in solving the initial value problem

$$\begin{aligned} i\hbar \frac{\partial \psi }{\partial t} = {\widehat{{\mathcal Q}}}(t)\psi ,\qquad \psi |_{t=0} = \psi _{A,0}. \end{aligned}$$
(105)

Note that the origin is a fixed point of the Hamilton field of \({\mathcal Q}\).

Proposition A.3

The solution of (105) is

$$\begin{aligned} \psi = \nu (t)\psi _{A(t), 0}, \end{aligned}$$
(106)

where A(t) and \(\nu (t)\) solve (89) and (90) with \(A(0)=A\) and \(\nu (0)=1\).

Proof

We make the ansatz that \(\psi \) is of the form (106) and substitute into the equation. After some calculations, we obtain the desired equations for A(t) and \(\nu (t)\). \(\square \)

1.3 A.3. Hamiltonians of degree at most two

Let us now consider an arbitrary Hamiltonian \(H:{\mathbb R}^{2N}\rightarrow {\mathbb R}\), \(t\mapsto w(t)\) a trajectory of H. For each t, let us write the Taylor approximation of degree at most two centered at w(t), in complex coordinates:

$$\begin{aligned} H_2(z)= & {} H(w(0)) + (z-w(t))\frac{\partial H}{\partial z}(w(t))\nonumber \\&+(\overline{z}-\overline{w}(t))\frac{\partial H}{\partial \overline{z}}(\overline{w}(t)) + {\mathcal Q}(t)(z-w(t), \overline{z}-\overline{w}(t)) \end{aligned}$$
(107)

where \({\mathcal Q}\) is the time-dependent Hamiltonian associated to half the Hessian of H at w(t),

$$\begin{aligned} {\mathcal Q}(t)(\zeta ,\overline{\zeta }) =\frac{1}{2} \left( \zeta H_{zz}\overline{\zeta }^T + \zeta H_{\overline{z}\,\overline{z}}\overline{\zeta }^T + 2\zeta H_{z\overline{z}} \overline{\zeta }^T \right) \end{aligned}$$
(108)

where the partial derivatives are evaluated at w(t).

Now let \({\widehat{H}}_2\) denote the Weyl quantization of \(H_2\), and let \(U_2(t)\) denote its propagator with \(U_2(0)= I\). We can express \(\widehat{H_2}\) in terms of annihilation and creation operators as:

$$\begin{aligned} {\widehat{H}}_2(t)= & {} H(w(t)) + \left( a^* -w(t) I\right) \cdot \frac{\partial H}{\partial w}(w(t)) \nonumber \\&+ \left( a-\overline{w}_t I\right) \cdot \frac{\partial H}{\partial \overline{w}}(w(t)) + {\widehat{{\mathcal Q}}}(a^* -w(t), a-\overline{w}_t I). \end{aligned}$$
(109)

It turns out one can compute \(U_2(t)\), in the following sense:

Proposition A.4

(Proposition 39 in [6]) Let \(U_{\mathcal Q}(t)\) be the propagator of \({\widehat{{\mathcal Q}}}\) (a metaplectic operator) satisfying \(U_{\mathcal Q}(0)= I\). Then,

$$\begin{aligned} U_2(t) = e^{i\hbar ^{-1}\delta _t}{\widehat{T}}_{w(t)}\circ U_{\mathcal Q}(t)\circ {\widehat{T}}_{w(0)}^{-1} \end{aligned}$$
(110)

where

$$\begin{aligned} \delta _t = - t H(w(0)) + \frac{i}{2} \int _{0}^{t} \left( w(s) \dot{{\bar{w}}}(s) - {\dot{w}}(s) {\bar{w}}(s)\right) . \end{aligned}$$
(111)

Proof

Denote for now the right-hand side of (110) by \(U_2\). The proof is to show that

$$\begin{aligned} i\hbar {\dot{U}}_2 = {\widehat{H}}_2 U_2\quad \text {and}\quad U_2(0) = I. \end{aligned}$$
(112)

The second condition is clearly satisfied, so let’s differentiate the right-hand side of (110). We get:

$$\begin{aligned} {\dot{U}}_2 = -i\hbar ^{-1}\dot{\delta _t}\, U_2+ (\mathrm {II}) + \mathrm (III), \end{aligned}$$

where [using (101)]

$$\begin{aligned} \text {(II)}= \hbar ^{-1}e^{i\hbar ^{-1}\delta _t} {\widehat{T}}_{w(t)}\left[ \frac{1}{2} \left( w\cdot \dot{\overline{w}}- {\dot{w}}\cdot \overline{w}\right) + \dot{\overline{w}}\cdot a^*- {\dot{w}}\cdot a\right] U_{\mathcal Q}(t){\widehat{T}}_{w(0)}^{-1} \end{aligned}$$

and

$$\begin{aligned} \text {(III)} = -i\hbar ^{-1}e^{i\hbar ^{-1}\delta _t}{\widehat{T}}_{w(t)}{\widehat{{\mathcal Q}}}(t) U_{\mathcal Q}(t) {\widehat{T}}_{w(0)}^{-1}. \end{aligned}$$

Using again the definition of \(U_2\) to solve for \(U_{\mathcal Q}{\widehat{T}}_{w(0)}^{-1}\), we can write

$$\begin{aligned} \text {(II)} = \hbar ^{-1}{\widehat{T}}_{w(t)}\left[ \frac{1}{2} \left( w\cdot \dot{\overline{w}}- {\dot{w}}\cdot \overline{w}\right) + \dot{\overline{w}}\cdot a^*- {\dot{w}}\cdot a\right] {\widehat{T}}_{w(t)}^{-1} U_2 \end{aligned}$$

and

$$\begin{aligned} \text {(III)} = -i\hbar ^{-1}{\widehat{T}}_{w(t)}{\widehat{{\mathcal Q}}}(t) {\widehat{T}}_{w(t)}^{-1} U_2. \end{aligned}$$

We analyze (II) further, the key step being

$$\begin{aligned} {\widehat{T}}_{w(t)}\left[ \dot{\overline{w}}\cdot a^*- {\dot{w}}\cdot a\right] {\widehat{T}}_{w(t)}^{-1}= & {} {\widehat{T}}_{w(t)}(\dot{\overline{w}}\cdot a^*) {\widehat{T}}_{w(t)}^{-1} - {\widehat{T}}_{w(t)}( {\dot{w}}\cdot a) {\widehat{T}}_{w(t)}^{-1}\\= & {} \dot{\overline{w}} \cdot (a^* - wI) - {\dot{w}} \cdot (a-\overline{w}I) . \end{aligned}$$

After some calculations, one finds that

$$\begin{aligned} i\hbar {\dot{U}}_2\,U_2^{-1} = -\dot{\delta }_t +\frac{i}{2} \left( w\cdot \dot{\overline{w}}- {\dot{w}}\cdot \overline{w}\right) - H(w(t)) + {\widehat{H}}_2(t), \end{aligned}$$

so \(\dot{\delta _t} = -H(w(0)) + \frac{i}{2} \left( w\cdot \dot{\overline{w}}- {\dot{w}}\cdot \overline{w}\right) \) using \(H(w(t)) = H(w(0))\). Integrating gives (111). \(\square \)

Corollary A.5

$$\begin{aligned} U_2(t)\left( \psi _{A,w(0)}\right) = \nu (t) e^{ i k \delta _t}\psi _{A(t),w(t)} \end{aligned}$$

where \(\nu (t)\) and A(t) satisfy (89) and (90).

1.4 A.4. Propagation

First, we need a preliminary estimate which we state without proof:

Proposition A.6

Let \({\widehat{H}}, {\widehat{H}}_2\) be semiclassical pseudodifferential operators acting on the Bargmann space of \({\mathbb C}^N\), with principal symbols H and \(H_2\). Let \(w\in {\mathbb C}^N\) and assume that \(H-H_2\) vanishes at w, together with its first and second derivatives. Then, for any \(A\in {\mathcal D}_N\)

$$\begin{aligned} \Vert ({\widehat{H}}-{\widehat{H}}_2)\psi _{A,w}\Vert = \Vert \psi _{A,w}\Vert \cdot O(\hbar ^{3/2}). \end{aligned}$$
(113)

To finish the proof of (88), we follow the argument of Chapter 4 in [6]. By Duhamel’s principle

$$\begin{aligned} U(t) - U_2(t) = \frac{1}{i\hbar }\int _0^t U(t,s)\left( {\widehat{H}}-{\widehat{H}}_2(s) \right) U_2(t,s)\, \mathrm{d}s \end{aligned}$$
(114)

where U(ts) is the propagator for \({\widehat{H}}\) such that \(U(t,t)= I\) (and similarly for \(U_2(t,s)\)), it follows that

$$\begin{aligned} \Vert U(t)(\psi _{A,w(0)}) - U_2(t)(\psi _{A,w(0)})\Vert \le \hbar ^{-1}\int _0^t \Vert \left( {\widehat{H}}-{\widehat{H}}_2(s) \right) \phi _{t,s}\Vert \,\mathrm{d}s \end{aligned}$$

where \(\phi _{t,s} = U_2(t,s)(\psi _{A,w(0)})\). This, combined with (113), yields

$$\begin{aligned} \Vert U(t)(\psi _{A,w(0)}) - U_2(t)(\psi _{A,w(0)})\Vert = \Vert \psi _{A,w(0)}\Vert \cdot O(\hbar ^{1/2}). \end{aligned}$$
(115)

Using Corollary A.5, we obtain Theorem 5.5.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rousseva, J., Uribe, A. Reduction and coherent states. Lett Math Phys 111, 52 (2021). https://doi.org/10.1007/s11005-021-01398-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01398-x

Keywords

Mathematics Subject Classification

Navigation