Skip to main content
Log in

Uncertainty Analysis of Stage-Discharge Curves by Generalized Likelihood Uncertainty Estimation (GLUE) Method

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Calibration of the rating curve is a challenge due to uncertainty in the parameters. This problem increases in an area with considerable seasonal vegetation diversity. In this study, the generalized likelihood uncertainty estimation (GLUE) method was combined with the proposed stage-discharge model, introduced by Maghrebi et al., to compute the parameter uncertainty of the rating curve in the Main River in the UK and the Colorado River in Argentina. In GLUE methodology, the sensitivity and uncertainty analysis of each parameter were investigated by comparing the prior and posterior distribution of the effective parameters in the proposed method. It should be noted that all the parameters studied in the proposed model, such as power function parameters (a1, a2, and a3) and Manning’s roughness coefficient can be acquired with an optimal parameter domain using the calibration method. The results demonstrated low sensitivity of roughness parameters and high sensitivity of power function parameter a1 in comparison with other parameters. In order to evaluate the uncertainty results, two average relative interval length (ARILCI) and the percent of observations bracketed by the 95CI (PCI95%) factors at 95% confidence level were used. The results showed that if the observational data were selected from the middle level, a more favorable result would be obtained and demonstrated less uncertainty in the output range of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pappenberger, F., & Beven, K. J. (2006). Ignorance is bliss: Or seven reasons not to use uncertainty analysis. Water Resources Research. https://doi.org/10.1029/2005WR004820

    Article  Google Scholar 

  2. Freni, G., Mannina, G., & Viviani, G. (2008). Uncertainty in urban stormwater quality modelling: The effect of acceptability threshold in the GLUE methodology. Water Research, 42(8–9), 2061–2072. https://doi.org/10.1016/j.watres.2007.12.014

    Article  CAS  Google Scholar 

  3. Beck, M. B. (1987). Water quality modelling: A review of uncertainty. Water Resources Research, 23(8), 1393–1442

    Article  CAS  Google Scholar 

  4. Yulianti, J. S., Lence, B. J., Johnson, G. V., & Takyi, A. K. (1999). Non-point source water quality management under input information uncertainty. Journal of Environmental Management, 55(3), 199–217. https://doi.org/10.1006/jema.1998.0257

    Article  Google Scholar 

  5. Herschy, R. W. (2009). Streamflow Measurement. Taylor & Francis. CRC Press. https://doi.org/10.2113/gseegeosci.ii.4.609

    Article  Google Scholar 

  6. Clarke, R. T. (1999). Uncertainty in the estimation of mean annual flood due to rating curve definition. Journal of Hydrology, 222, 185–190

    Article  Google Scholar 

  7. Kiang, J. E., Gazoorian, C., McMillan, H., Coxon, G., Le Coz, J., Westerberg, I. K., & Mason, R. (2018). A comparison of methods for streamflow uncertainty estimation. Water Resources Research, 54(10), 7149–7176. https://doi.org/10.1029/2018wr022708

    Article  Google Scholar 

  8. Tomkins, K. M. (2012). Uncertainty in streamflow rating curves: Methods, controls and consequences. Hydrological Processes, 28(3), 464–481. https://doi.org/10.1002/hyp

    Article  Google Scholar 

  9. Westerberg, I., Guerrero, J. L., Seibert, J., Beven, K. J., & Halldin, S. (2011). Stage-discharge uncertainty derived with a non-stationary rating curve in the Choluteca River. Honduras. Hydrological Processes, 25(4), 603–613. https://doi.org/10.1002/hyp.7848

    Article  Google Scholar 

  10. Coxon, G., Freer, J., Westerberg, I. K., Wagener, T., Woods, R., & Smith, P. J. (2015). A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations. Water Resources Research, 51(7), 5531–5546. https://doi.org/10.1002/2014WR016532

    Article  CAS  Google Scholar 

  11. Mukolwe, M. M., Baldassarre, G. D., Werner, M., & Solomatine, D. P. (2013). Flood modelling: parameterisation and inflow uncertainty. Proceedings of the Institution of Civil Engineers - Water Management, 167(1), 51–60. https://doi.org/10.1680/wama.12.00087

    Article  Google Scholar 

  12. Guerrero, J. L., Westerberg, I. K., Halldin, S., Xu, C. Y., & Lundin, L. C. (2012). Temporal variability in stage-discharge relationships. Journal of Hydrology, 446–447, 90–102. https://doi.org/10.1016/j.jhydrol.2012.04.031

    Article  Google Scholar 

  13. Le Coz, J., Renard, B., Bonnifait, L., Branger, F., & Le Boursicaud, R. (2014). Combining hydraulic knowledge and uncertain gaugings in the estimation of hydrometric rating curves: A Bayesian approach. Journal of Hydrology, 509, 573–587. https://doi.org/10.1016/j.jhydrol.2013.11.016

    Article  Google Scholar 

  14. McMillan, H. K., & Westerberg, I. K. (2015). Rating curve estimation under epistemic uncertainty. Hydrological Processes, 29(7), 1873–1882. https://doi.org/10.1002/hyp.10419

    Article  Google Scholar 

  15. Morlot, T., Perret, C., Favre, A. C., & Jalbert, J. (2014). Dynamic rating curve assessment for hydrometric stations and computation of the associated uncertainties: Quality and station management indicators. Journal of Hydrology, 517, 173–186. https://doi.org/10.1016/j.jhydrol.2014.05.007

    Article  Google Scholar 

  16. Domeneghetti, A., Castellarin, A., & Brath, A. (2012). Assessing rating-curve uncertainty and its effects on hydraulic model calibration. Hydrology and Earth System Sciences, 16(4), 1191–1202. https://doi.org/10.5194/hess-16-1191-2012

    Article  Google Scholar 

  17. Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279–298. https://doi.org/10.1002/hyp.3360060305

    Article  Google Scholar 

  18. Hornberger, G. M., & Spear, R. C. (1981). An approach to the preliminary analysis of environmental systems. Journal of Environmental Management, 12, 7–18

    Google Scholar 

  19. Vázquez, R. F., Beven, K., & Feyen, J. (2009). GLUE based assessment on the overall predictions of a MIKE SHE application. Water Resources Management, 23(7), 1325–1349. https://doi.org/10.1007/s11269-008-9329-6

    Article  Google Scholar 

  20. Zhang, Y., Liu, H.H., & Houseworth, J. (2010). Modified generalized likelihood uncertainty estimation (GLUE) methodology for considering the subjectivity of likelihood measure selection. Journal of Hydrologic Engineering, 16(6), 558–561. https://doi.org/10.1061/(asce)he.1943-5584.0000341

    Article  Google Scholar 

  21. Braca, G. (2008). Stage – discharge relationships in open channels : Practices and problems. Environmental Protection, 24.

  22. Maghrebi, M. F. (2006). Application of the single point measurement in discharge estimation. Advances in Water Resources, 29(10), 1504–1514. https://doi.org/10.1016/j.advwatres.2005.11.007

    Article  Google Scholar 

  23. Maghrebi, M. F., Ahmadi, A., Attari, M., & Maghrebi, R. F. (2016). New method for estimation of stage-discharge curves in natural rivers. Flow Measurement and Instrumentation, 52, 67–76. https://doi.org/10.1016/j.flowmeasinst.2016.09.008

    Article  Google Scholar 

  24. Maghrebi, M. F., Kavousizadeh, A., Maghrebi, R. F., & Ahmadi, A. (2017). Stage–discharge estimation in straight compound channels using isovel contours. Hydrological Processes, 31(22), 3859–3870. https://doi.org/10.1002/hyp.11299

    Article  Google Scholar 

  25. Maghrebi, M. F., & Ball, J. E. (2006). New method for estimation of discharge. Journal of Hydraulic Engineering, 132(10), 1044–1051. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1044)

    Article  Google Scholar 

  26. Aronica, G., Hankin, B., & Beven, K. (1998). Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data. Advances in Water Resources, 22(4), 349–365. https://doi.org/10.1016/S0309-1708(98)00017-7

    Article  Google Scholar 

  27. Melching, C. S., & Yoon, C. G. (1996). Key sources of uncertainty in QUAL2E model of Passaic River. Journal of Water Resources Planning and Management, 122(2), 105–113. https://doi.org/10.1061/(ASCE)0733-9496(1996)122:2(105)

    Article  Google Scholar 

  28. Jin, X., Xu, C., Zhang, Q., & Singh, V. P. (2010). Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Journal of Hydrology, 383(3–4), 147–155. https://doi.org/10.1016/j.jhydrol.2009.12.028

    Article  Google Scholar 

  29. Li, L., Xia, J., Xu, C. Y., & Singh, V. P. (2010). Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models. Journal of Hydrology, 390(3–4), 210–221. https://doi.org/10.1016/j.jhydrol.2010.06.044

    Article  Google Scholar 

  30. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  31. Knight, D. W., Hazlewood, C., Lamb, R., & Samuels, P. G. (2010). Practical channel hydraulics: Roughness, conveyance and afflux. CRC Press.

    Google Scholar 

  32. Bozzi, S., Passoni, G., Bernardara, P., Goutal, N., & Arnaud, A. (2015). Roughness and discharge uncertainty in 1D water level calculations. Environmental Modeling and Assessment, 20(4), 343–353. https://doi.org/10.1007/s10666-014-9430-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahmoud F. Maghrebi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghrebi, M.F., Vatanchi, S.M. Uncertainty Analysis of Stage-Discharge Curves by Generalized Likelihood Uncertainty Estimation (GLUE) Method. Environ Model Assess 26, 447–458 (2021). https://doi.org/10.1007/s10666-021-09770-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-021-09770-w

Keywords

Navigation