Skip to main content
Log in

Entanglement Witnesses Constructed By Permutation Pairs

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

For n ≥ 3, we construct a class \(\left\{{{W_{n,{\pi _1},{\pi _2}}}} \right\}\) of n2 × n2 hermitian matrices by the permutation pairs and show that, for a pair {π1, π2} of permutations on (1, 2, …, n), \({{W_{n,{\pi _1},{\pi _2}}}}\) is an entanglement witness of the nn system if {π1, π2} has the property (C). Recall that a pair {π1, π2} of permutations of (1, 2, …, n) has the property (C) if, for each i, one can obtain a permutation of (1, …, i − 1, i + 1, …, n) from (π1 (1), …, π1 (i − 1), π1(i + 1), …, π1(n)) and (π2(1), …, π2(i − 1), π2(i + 1), …, π2(n)). We further prove that \({{W_{n,{\pi _1},{\pi _2}}}}\) is not comparable with Wn,π, which is the entanglement witness constructed from a single permutation π; \({{W_{n,{\pi _1},{\pi _2}}}}\) is decomposable if π1π2 = id or π 21 = π 22 = id. For the low dimensional cases n ∈ {3, 4}, we give a sufficient and necessary condition on π1, π2 for \({{W_{n,{\pi _1},{\pi _2}}}}\) to be an entanglement witness. We also show that, for n ∈ {3, 4}, \({{W_{n,{\pi _1},{\pi _2}}}}\) is decomposable if and only if π1π2 = id or π 21 = π 22 ; = id; \({{W_{3,{\pi _1},{\pi _2}}}}\) is optimal if and only if (π1, π2) = (π, π2), where π = (2, 3,1). As applications, some entanglement criteria for states and some decomposability criteria for positive maps are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson W. Maximal vectors in Hilbert spaces and quantum entanglement. J Funct Anal, 2009, 256: 1476–1510

    Google Scholar 

  2. Augusiak R, Tura J, Lewenstein M. A note on the optimality of decomposable entanglement witnesses and completely entangled subspaces. J Phys A: Math Theor, 2011, 44: 212001

    Google Scholar 

  3. Guo Y, Hou J C. Realignment operation and CCNR criterion of separability for states in infinite-dimensional quantum systems. Reports on Mathematical Physics, 2013, 72: 25–40

    Google Scholar 

  4. Guo Y, Qi X F, Hou J C. Sufficient and necessary conditions of separability for bipartite pure states in infinite-dimensional systems. Chinese Science Bull, 2011, 56: 840–846

    Google Scholar 

  5. Horodecki M, Horodecki P, Horodecki R. Separability of mixed states: necessary and sufficient conditions. Phys Lett A, 1996, 233: 1

    Google Scholar 

  6. Horodecki P. Separability criterion and inseparable mixed states with positive partial transposition. Phys Lett A, 1997, 232: 333–339

    Google Scholar 

  7. Hou J C, A characterization of positive linear maps and criteria for entangled quantum states. J Phys A: Math Theor, 2010, 43: 385201

    Google Scholar 

  8. Hou J C, Guo Y. When different entanglement witesses detect the same entangled states. Phy Rev A, 2010, 82: 052301

    Google Scholar 

  9. Hou J C, Guo Y. Constructing entanglement witnesses for states in infinite-dimensional bipartite quantum systems. Int J Theor Phy, 2011, 50: 1245–1254

    Google Scholar 

  10. Hou J C, Li C K, Poon X T, et al. A new criterion and a special class of k-positive maps. Lin Alg Appl, 2015, 470: 51–69

    Google Scholar 

  11. Hou J C, Qi X F. Constructing entanglement witnesses for infinite-dimensional systems. Phy Rev A, 2010, 81: 062351

    Google Scholar 

  12. Hou J C, Wang W L. Constructing entanglement witnesses for infinite-dimensional systems. Int J Theor Phy, 2019, 58: 1269–1281

    Google Scholar 

  13. Hou J C, Zhao H L. Positive maps constructed from permutation pairs. Acta Mathematica Scientia, 2019, 39B: 1–17

    Google Scholar 

  14. Lewensetein M, Kraus B, Cirac J I, Horodecki P. Optimization of entanglement witness. Phys Rev A, 2001, 62: 052310

    Google Scholar 

  15. Nielsen M A, Chuang I L. Quantum Computatation and Quantum Information. Cambridge: Cambridge University Press, 2000

    Google Scholar 

  16. Peres A. Separability criterion for density matrices. Phy Rev Lett, 1996, 77: 1413

    Google Scholar 

  17. Qi X F, Hou J C. Detecting entanglement of states by entries of their density matrices. Int J Theor Phy, 2012, 51: 2003–2014

    Google Scholar 

  18. Qi X F, Hou J C. Characterization of optimal entanglement witnesses. Phy Rev A, 2012, 85: 022334

    Google Scholar 

  19. Qi X F, Hou J C. Optimality of a class of entanglement witnesses for 3 ⊗ 3 systems. Int J Theor Phy, 2013, 52: 3474–3

    Google Scholar 

  20. Qi X F, Hou J C. Optimality of entanglement witnesses constructed from arbitrary permutations. Quantum Information Processing, 2015, 14: 2499–2515

    Google Scholar 

  21. Qi X F, Hou J C. Indecomposability of entanglement witnesses constructed from any permutations. Quantum Information and Computation, 2015, 15: 0478–0488

    Google Scholar 

  22. Qi X F, Hou J C. Positive finite rank elementary operators and characterizing entanglement of states. J Phy A: Math Theor, 2011, 44: 215305

    Google Scholar 

  23. Rudolph O. Further results on the cross norm criterion for separability. Quantum Information Processing, 2005, 4: 219

    Google Scholar 

  24. Størmer E. Separable states and positive maps. J Funct Anal, 2008, 254: 2303–2312

    Google Scholar 

  25. Tóth G, Gühne O. Separability criteria and entanglement witnesses for symmetric quantum states. Appl Phy B, 2010, 98: 617–622

    Google Scholar 

  26. Wu Y C, Han Y J, Guo G C. When different entanglement witnesses can detect the same entangled states. Phy Lett A, 2006, 356: 402–405

    Google Scholar 

  27. Yu S, Liu N L. Entanglement detection by local orthogonal observables. Phy Rev Lett, 2005, 95: 150504

    Google Scholar 

  28. Zhao H L, Hou J C. A necessary and sufficient condition for positivity of linear maps on M4 constructed from permutation pairs. Operator and Matrices, 2015, 9(3): 597–617

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinchuan Hou  (侯晋川).

Additional information

This work is partially supported by National Natural Science Foundation of China (11671294, 12071336).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Wang, W. Entanglement Witnesses Constructed By Permutation Pairs. Acta Math Sci 41, 843–874 (2021). https://doi.org/10.1007/s10473-021-0313-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-021-0313-z

Key words

2010 MR Subject Classification

Navigation