Skip to main content
Log in

High-Order Numerical Method for Solving a Space Distributed-Order Time-Fractional Diffusion Equation

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation. First, we use the mid-point quadrature rule to transform the space distributed-order term into multi-term fractional derivatives. Second, based on the piecewise-quadratic polynomials, we construct the nodal basis functions, and then discretize the multi-term fractional equation by the finite volume method. For the time-fractional derivative, the finite difference method is used. Finally, the iterative scheme is proved to be unconditionally stable and convergent with the accuracy O(σ2 + τ2−β + h3), where τ and h are the time step size and the space step size, respectively. A numerical example is presented to verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Smoller J. Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1983

    Google Scholar 

  2. Wyss W. The fractional diffusion equation. J Math Phys, 1986, 27(11): 2782–2785

    Google Scholar 

  3. Podlubny I. Fractional Differential Equations. SanDiego: Academic Press, 1999

    Google Scholar 

  4. Benson D A, Wheatcraft S W, Meerschaert M M. Application of a fractional advection-dispersion equation. Water Resour Res, 2000, 36(6): 1403–1412

    Google Scholar 

  5. Magin R L. Fractional Calculus in Bioengineering. Connecticut: Begell House Publisher Inc, 2006

    Google Scholar 

  6. Li J, Guo B L. Parameter identification in fractional differential equations. Acta Mathematica Scientia, 2013, 33B(3): 855–864

    Google Scholar 

  7. Jiang Y J, Ma J T. Moving finite element methods for time fractional partial differential equations. Sci China Math, 2013, 56(6): 1287–1300

    Google Scholar 

  8. Li Q, Wang W, Teng X, Wu X. Ground states for fractional Schrödinger equations with electromagnetic fields and critical growth. Acta Mathematica Scientia, 2020, 40B(1): 59–74

    Google Scholar 

  9. Li X W, Li Y X, Liu Z H, et al. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Frac Calc Appl Anal, 2018, 21(6): 1439–1470

    Google Scholar 

  10. Liu F W, Feng L B, Anh V, et al. Unstructed-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregualr convex domains. Comput Math Appl, 2019, 78: 1637–165

    Google Scholar 

  11. Li X W, Liu Z H, Li J, et al. Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces. Acta Mathematica Scientia, 2019, 39B(1): 229–242

    Google Scholar 

  12. Caputo M. Mean fractional-order-derivatives differential equations and filters. Annali dellUniversita di Ferrara, 1995, 41: 73–84

    Google Scholar 

  13. Chechkin A V, Gorenflo R, Sokolov I M. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys Rev E, 2002, 66: 046129

    Google Scholar 

  14. Ye H, Liu F, Anh V. Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J Comput Phys, 2015, 298: 652–660

    Google Scholar 

  15. Chen H, Lü S J, Chen W P. Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain. J Comput Phys, 2016, 315: 84–97

    Google Scholar 

  16. Li X L, Rui H X. A block-centered finite difference method for the distributed-order time-fractional diffusion-wave equation. Appl Numer Math, 2018, 131: 123–139

    Google Scholar 

  17. Wei L L. A fully Discrete LDG Method for the Distributed-order Time-Fractional Reaction-Diffusion Equation. Bull Malays Math Sci Soc, 2019, 42: 979–994

    Google Scholar 

  18. Li X Y, Wu B Y. A numerical method for solving distributed order diffusion equations. Appl Math Lett, 2016, 53: 92–99

    Google Scholar 

  19. Abbaszadeh M, Dehghan M. An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer Algor, 2017, 75: 173–211

    Google Scholar 

  20. Pimenov V G, Hendy A S, De Staelen R H. On a class of non-linear delay distributed order fractional diffusion equations. J Comput Appl Math, 2017, 318: 433–443

    Google Scholar 

  21. Morgado M L, Rebelo M, Ferrás L L, et al. Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method. App Numer Math, 2017, 114: 108–123

    Google Scholar 

  22. Hendy A S, De Staelen R H, Pimenov V G. A semi-linear delayed diffusion-wave system with distributed order in time. Numer Algor, 2018, 77: 885–903

    Google Scholar 

  23. Liu Q Z, Mu S J, Liu Q X, et al. An RBF based meshless method for the distributed order time fractional advection-diffusion equation. Eng Analy Bound Ele, 2018, 96: 55–63

    Google Scholar 

  24. Pourbabaee M, Saadatmandi A. A novel Legendre operational matrix for distributed order fractional differential equations. Appl Math Comput, 2019, 361: 215–231

    Google Scholar 

  25. Rahimkhani P, Ordokhani Y, Lima P M. An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets. Appl Numer Math, 2019, 145: 1–27

    Google Scholar 

  26. Xu Y, Zhang Y M, Zhao J J. Error analysis of the Legendre-Gauss collocation methods for the nonlinear distributed-order fractional differential equation. Appl Numer Math, 2019, 142: 122–138

    Google Scholar 

  27. Zaky M A, Machado J T. Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. Comput Math Appl, 2019

  28. Moghaddam B P, Tenreiro Machado J A, Morgado M L. Numerical approach for a class of distributed order time fractional partial differential equations. Appl Numer Math, 2019, 136: 152–162

    Google Scholar 

  29. Li J, Liu F, Feng L, et al. A novel finite volume method for the Riesz space distributed-order advection-diffusion equation. Appl Math Model, 2017, 46: 536–553

    Google Scholar 

  30. Li J, Liu F, Feng L, et al. A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput Math Appl, 2017, 74: 772–783

    Google Scholar 

  31. Fan W, Liu F. A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Appl Math Lett, 2018, 77: 114–121

    Google Scholar 

  32. Zhang H, Liu F, Jiang X, et al. A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comput Math Appl, 2018, 76: 2460–2476

    Google Scholar 

  33. Jia J, Wang H. A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput Math Appl, 2018, 75: 2031–2043

    Google Scholar 

  34. Zheng X C, Liu H, Wang H, et al. An efficient finite volume method for nonlinear distributed-order space-fractional diffusion equations in three space dimensions. J Sci Comput, 2019, 80: 1395–1418

    Google Scholar 

  35. Shi Y H, Liu F, Zhao Y M, et al. An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain. Appl Math Model, 2019, 73: 615–636

    Google Scholar 

  36. Javidi M, Heris M S. Analysis and numericalmethods for the Riesz space distributed-order advection-diffusion equation with time delay. SeMA J, 2019

  37. Abbaszadeh M. Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. Appl Math Lett, 2019, 88: 179–185

    Google Scholar 

  38. Soklov I M, Chechkin A V, Klafter J. Distributed-order fractional kinetics. Acta Phys Pol B, 2004, 35: 1323–1341

    Google Scholar 

  39. Lin Y, Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys, 2007, 225: 1533–1552

    Google Scholar 

  40. Wang X, Liu F, Chen X. Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations. Adv Math Phys, 2015, 2015: 1–14

    Google Scholar 

  41. Shen S, Liu F, Anh V, et al. Detailed analysis of a conservative difference approximation for the time fractional diffusion equation. J Comput Appl Math, 2006

  42. Feng L B, Zhuang P, Liu F, et al. Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Appl Math Comput, 2015, 257: 52–65

    Google Scholar 

  43. Wang H, Basu T S. A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J Sci Comput, 2012, 34: 2444–2458

    Google Scholar 

  44. Wang H, Wang K, Sircar T. A direct O(N log2N) finite difference method for fractional diffusion equations. J Comput Phys, 229: 8095–8104

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li  (李景).

Additional information

The first author is supported by the Natural and Science Foundation Council of China (11771059), Hunan Provincial Natural Science Foundation of China (2018JJ3519) and Scientific Research Project of Hunan Provincial office of Education (20A022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, Y., Jiang, Y. et al. High-Order Numerical Method for Solving a Space Distributed-Order Time-Fractional Diffusion Equation. Acta Math Sci 41, 801–826 (2021). https://doi.org/10.1007/s10473-021-0311-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-021-0311-1

Key words

2010 MR Subject Classification

Navigation