Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

4-Aminosalicylic Acid-based Hybrid Compounds: Synthesis and In vitro Antiplasmodial Evaluation

Author(s): Xhamla Nqoro, Siphesihle Jama, Eric Morifi and Blessing Atim Aderibigbe*

Volume 18, Issue 3, 2021

Published on: 01 August, 2020

Page: [284 - 298] Pages: 15

DOI: 10.2174/1570180817999200802031547

Price: $65

Abstract

Background: Malaria is a deadly and infectious disease responsible for millions of death worldwide, mostly in the African region. The malaria parasite has developed resistance to the currently used antimalarial drugs, and it has urged researchers to develop new strategies to overcome this challenge by designing different classes of antimalarials.

Objectives: A class of hybrid compounds containing 4-aminosalicylic acid moiety was prepared via esterification and amidation reactions and characterized using FTIR, NMR and LC-MS. In vitro antiplasmodial evaluation was performed against the asexual NF54 strain of P. falciparum parasites.

Methods: In this research, known 4-aminoquinoline derivatives were hybridized with 4- aminosalicylic acid to afford hybrid compounds via esterification and amidation reactions. 4- aminosalicylic acid, a dihydrofolate compound inhibits DNA synthesis in the folate pathway and is a potential pharmacophore for the development of antimalarials.

Results: The LC-MS, FTIR, and NMR analysis confirmed the successful synthesis of the compounds. The compounds were obtained in yields in the range of 63-80%. The hybrid compounds displayed significant antimalarial activity when compared to 4-aminosalicylic acid, which exhibited poor antimalarial activity. The IC50 value of the most potent hybrid compound, 9 was 9.54±0.57 nm.

Conclusion: 4-aminosalicylic has different functionalities, which can be used for hybridization with a wide range of compounds. It is a potential pharmacophore that can be utilized for the design of potent antimalarial drugs. It was found to be a good potentiating agent when hybridized with 4- aminoquinoline derivatives suggesting that they can be utilized for the synthesis of a new class of antimalarials.

Keywords: Dihydrofolate, 4-aminosalicylic acid, Plasmodium falciparum, 4-aminoquinoline, hybrid compound, malaria.

Graphical Abstract
[1]
Jain, M.; Reddy, C.V.R.P.; Halder, M.; Singh, S.; Kumar, R.; Wasudeo, S.G.; Singh, P.P.; Khan, S.I.; Jacob, M.R.; Tekwani, B.L.; Jain, R. Synthesis and biological evaluation of 8-quinolinamines and their amino acid conjugates as broad-spectrum anti-infectives. ACS Omega, 2018, 3(3), 3060-3075.
[http://dx.doi.org/10.1021/acsomega.7b02047] [PMID: 30023858]
[2]
World Health Organization. World Malaria Report, 2015.https://www.who.int/malaria/publications/world-malaria-report-2015/report/en/
[3]
Kondaparla, S.; Soni, A.; Manhas, A.; Srivastava, K.; Puri, S.K.; Katti, S.B. Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains. Bioorg. Chem., 2017, 70, 74-85.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.010] [PMID: 27908538]
[4]
Jones, R.A.; Panda, S.S.; Hall, C.D. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur. J. Med. Chem., 2015, 97, 335-355.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.002] [PMID: 25683799]
[5]
Ashley, E.A.; Pyae Phyo, A.; Woodrow, C.J. Malaria. Lancet, 2018, 391(10130), 1608-1621.
[http://dx.doi.org/10.1016/S0140-6736(18)30324-6] [PMID: 29631781]
[6]
World Health Organization. World Malaria Report, 2019.https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019
[7]
Kumar, S.; Bhardwaj, T.R.; Prasad, D.N.; Singh, R.K. Drug targets for resistant malaria: Historic to future perspectives. Biomed. Pharmacother., 2018, 104, 8-27.
[http://dx.doi.org/10.1016/j.biopha.2018.05.009] [PMID: 29758416]
[8]
Chopra, R.; Chibale, K.; Singh, K. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. Eur. J. Med. Chem., 2018, 148, 39-53.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.021] [PMID: 29454189]
[9]
Alencar, N.; Sola, I.; Linares, M.; Juárez-Jiménez, J.; Pont, C.; Viayna, A.; Vílchez, D.; Sampedro, C.; Abad, P.; Pérez-Benavente, S.; Lameira, J.; Bautista, J.M.; Muñoz-Torrero, D.; Luque, F.J. First homology model of Plasmodium falciparum glucose-6-phosphate dehydrogenase: Discovery of selective substrate analog-based inhibitors as novel antimalarial agents. Eur. J. Med. Chem., 2018, 146, 108-122.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.044] [PMID: 29407943]
[10]
Amoah, L.E.; Donu, D.; Abuakum, B.; Ahorlu, C.; Arhinful, D.; Afari, E.; Malm, K.; Koram, K.A. Probing the composition of Plasmodium species contained in malaria infections in the Eastern region of Ghana. BMC Public Health, 2019, 19, p. 11.
[http://dx.doi.org/10.1186/s12889-019-7989-1]
[11]
Flammersfeld, A.; Lang, C.; Flieger, A.; Pradel, G. Phospholipases during membrane dynamics in malaria parasites. Int. J. Med. Microbiol., 2018, 308(1), 129-141.
[http://dx.doi.org/10.1016/j.ijmm.2017.09.015] [PMID: 28988696]
[12]
Foley, M.; Tilley, L. Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79(1), 55-87.
[http://dx.doi.org/10.1016/S0163-7258(98)00012-6] [PMID: 9719345]
[13]
Nqoro, X.; Tobeka, N.; Aderibigbe, B.A. Quinoline-based hybrid compounds with antimalarial activity. Molecules, 2017, 22(12), 2268.
[http://dx.doi.org/10.3390/molecules22122268] [PMID: 29257067]
[14]
Haldar, K.; Bhattacharjee, S.; Safeukui, I. Drug resistance in Plasmodium. Nat. Rev. Microbiol., 2018, 16(3), 156-170.
[http://dx.doi.org/10.1038/nrmicro.2017.161] [PMID: 29355852]
[15]
Griffin, C.E.; Hoke, J.M.; Samarakoon, U.; Duan, J.; Mu, J.; Ferdig, M.T.; Warhurst, D.C.; Cooper, R.A. Mutation in the Plasmodium falciparum CRT protein determines the stereospecific activity of antimalarial cinchona alkaloids. Antimicrob. Agents Chemother., 2012, 56(10), 5356-5364.
[http://dx.doi.org/10.1128/AAC.05667-11] [PMID: 22869567]
[16]
Aderibigbe, B.A.; Mhlwatika, Z.; Nwamadi, M.; Balogun, M.O.; Matshe, W.M.R. Synthesis, characterization and in vitro analysis of polymer-based conjugates containing dihydrofolate reductase inhibitors. J. Drug Deliv. Sci. Technol., 2019, 50, 388-401.
[http://dx.doi.org/10.1016/j.jddst.2019.01.038]
[17]
Siciliano, G.; Alano, P. Enlightening the malaria parasite life cycle: Bioluminescent plasmodium in fundamental and applied research. Front. Microbiol., 2015, 6, 391.
[http://dx.doi.org/10.3389/fmicb.2015.00391] [PMID: 26029172]
[18]
Molina-Cruz, A.; Canepa, G.E.; Barillas-Mury, C. Plasmodium P47: A key gene for malaria transmission by mosquito vectors. Curr. Opin. Microbiol., 2017, 40, 168-174.
[http://dx.doi.org/10.1016/j.mib.2017.11.029] [PMID: 29229188]
[19]
Lodige, M.; Hiersch, L. Design and synthesis of novel hybrid molecules against malaria. Int. J. Med. Chem., 2015., Article ID 458319.
[http://dx.doi.org/10.1155/2015/458319]
[20]
Hansen, F.K.; Sumanadasa, S.D.M.; Stenzel, K.; Duffy, S.; Meister, S.; Marek, L.; Schmetter, R.; Kuna, K.; Hamacher, A.; Mordmüller, B.; Kassack, M.U.; Winzeler, E.A.; Avery, V.M.; Andrews, K.T.; Kurz, T. Discovery of HDAC inhibitors with potent activity against multiple malaria parasite life cycle stages. Eur. J. Med. Chem., 2014, 82, 204-213.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.050] [PMID: 24904967]
[21]
Raj, R.L.; Raj, K.M.; Kumar, V. 4-Aminoquinoline-hybridization en route towards the development of rationally designed antimalarial agents. RSC Adv., 2015, 5(101), 82676-82698.
[http://dx.doi.org/10.1039/C5RA16361G]
[22]
Hastings, I.M.; Hodel, E.M.; Kay, K. Quantifying the pharmacology of antimalarial drug combination therapy. Sci. Rep., 2016, 6, 32762.
[http://dx.doi.org/10.1038/srep32762] [PMID: 27604175]
[23]
Bell, D.S. Combine and conquer: Advantages and disadvantages of fixed-dose combination therapy. Diabetes Obes. Metab., 2013, 15(4), 291-300.
[http://dx.doi.org/10.1111/dom.12015] [PMID: 23013323]
[24]
Agarwal, D.; Gupta, R.D.; Awasthi, S.K. Are antimalarial hybrid molecules a close reality or a distant dream? Antimicrob. Agents Chemother., 2017, 61(5), e00249-e17.
[http://dx.doi.org/10.1128/AAC.00249-17] [PMID: 28289029]
[25]
Reddy, P.L.; Khan, S.I.; Ponnan, P.; Tripathi, M.; Rawat, D.S. Design, synthesis and evaluation of 4-aminoquinoline-purine hybrids as potential antiplasmodial agents. Eur. J. Med. Chem., 2017, 126, 675-686.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.057] [PMID: 27936446]
[26]
Rajapakse, C.S.; Lisai, M.; Deregnaucourt, C.; Sinou, V.; Latour, C.; Roy, D.; Schrével, J.; Sánchez-Delgado, R.A. Synthesis of new 4-aminoquinolines and evaluation of their in vitro activity against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. PLoS One, 2015, 10(10), e0140878.
[http://dx.doi.org/10.1371/journal.pone.0140878] [PMID: 26473363]
[27]
Bhagat, S.; Arfeen, M.; Das, G.; Ramkumar, M.; Khan, S.I.; Tekwani, B.L.; Bharatam, P.V. Design, synthesis and biological evaluation of 4-aminoquinoline-guanylthiourea derivatives as antimalarial agents. Bioorg. Chem., 2019, 91, 103094.
[http://dx.doi.org/10.1016/j.bioorg.2019.103094] [PMID: 31376783]
[28]
Kumar, D.; Khan, S.I.; Tekwani, B.L.; Ponnan, P.; Rawat, D.S. 4-Aminoquinoline-pyrimidine hybrids: Synthesis, antimalarial activity, heme binding and docking studies. Eur. J. Med. Chem., 2015, 89, 490-502.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.061] [PMID: 25462261]
[29]
Bhat, H.R.; Singh, U.P.; Thakur, A.; Kumar Ghosh, S.; Gogoi, K.; Prakash, A.; Singh, R.K. Synthesis, antimalarial activity and molecular docking of hybrid 4-aminoquinoline-1,3,5-triazine derivatives. Exp. Parasitol., 2015, 157, 59-67.
[http://dx.doi.org/10.1016/j.exppara.2015.06.016] [PMID: 26164360]
[30]
Thelingwani, R.; Bonn, B.; Chibale, K.; Masimirembwa, C. Physicochemical and drug metabolism characterization of a series of 4-aminoquinoline-3-hydroxypyridin-4-one hybrid molecules with antimalarial activity. Expert Opin. Drug Metab. Toxicol., 2014, 10(10), 1313-1324.
[http://dx.doi.org/10.1517/17425255.2014.954547] [PMID: 25219629]
[31]
Pawełczyk, A.; Sowa-Kasprzak, K.; Olender, D.; Zaprutko, L. Molecular consortia-various structural and synthetic concepts for more effective therapeutics synthesis. Int. J. Mol. Sci., 2018, 19(4), 19.
[http://dx.doi.org/10.3390/ijms19041104]]
[32]
Karaman, R. Prodrugs design based on inter- and intramolecular chemical processes. Chem. Biol. Drug Des., 2013, 82(6), 643-668.
[http://dx.doi.org/10.1111/cbdd.12224] [PMID: 23998799]
[33]
Capela, R.; Magalhães, J.; Miranda, D.; Machado, M.; Sanches-Vaz, M.; Albuquerque, I.S.; Sharma, M.; Gut, J.; Rosenthal, P.J.; Frade, R.; Perry, M.J.; Moreira, R.; Prudêncio, M.; Lopes, F. Endoperoxide-8-aminoquinoline hybrids as dual-stage antimalarial agents with enhanced metabolic stability. Eur. J. Med. Chem., 2018, 149, 69-78.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.048] [PMID: 29499488]
[34]
Pereira, M.R.; Henrich, P.P.; Sidhu, A.B.; Johnson, D.; Hardink, J.; Van Deusen, J.; Lin, J.; Gore, K.; O’Brien, C.; Wele, M.; Djimde, A.; Chandra, R.; Fidock, D.A. In vivo and in vitro antimalarial properties of azithromycin-chloroquine combinations that include the resistance reversal agent amlodipine. Antimicrob. Agents Chemother., 2011, 55(7), 3115-3124.
[http://dx.doi.org/10.1128/AAC.01566-10] [PMID: 21464242]
[35]
Sáenz, F.E.; Mutka, T.; Udenze, K.; Oduola, A.M.; Kyle, D.E. Novel 4-aminoquinoline analogs highly active against the blood and sexual stages of Plasmodium in vivo and in vitro. Antimicrob. Agents Chemother., 2012, 56(9), 4685-4692.
[http://dx.doi.org/10.1128/AAC.01061-12] [PMID: 22710117]
[36]
Falade, C.O.; Michael, S.O.; Oduola, A.M. Enhanced efficacy of amodiaquine and chlorpheniramine combination over amodiaquine alone in the treatment of acute uncomplicated Plasmodium falciparum malaria in children. Med. Princ. Pract., 2008, 17(3), 197-201.
[http://dx.doi.org/10.1159/000117792] [PMID: 18408387]
[37]
Abdu-Allah, H.H.M.; Abdelmoez, A.A.B.; Tarazi, H.; El-Shorbagi, A.A.; El-Awady, R. Conjugation of 4-aminosalicylate with thiazolinones afforded non-cytotoxic potent in vitro and in vivo anti-inflammatory hybrids. Bioorg. Chem., 2020, 94, 103378.
[http://dx.doi.org/10.1016/j.bioorg.2019.103378] [PMID: 31677858]
[38]
Abdu-Allah, H.H.; Abdel-Moty, S.G.; El-Awady, R.; El-Shorbagi, A.N. Design and synthesis of novel 5-aminosalicylate (5-ASA)-4-thiazolinone hybrid derivatives with promising antiproliferative activity. Bioorg. Med. Chem. Lett., 2016, 26(7), 1647-1650.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.073] [PMID: 26947606]
[39]
Abdu-Allah, H.H.; El-Shorbagi, A.N.; Abdel-Moty, S.G.; El-Awady, R.; Abdel-Alim, A.A. 5-Aminosalyclic acid (5-ASA): A unique anti-inflammatory salicylate. Med. Chem., 2016, 6, 306-315.
[40]
Abdu-Allah, H.H.; Youssif, B.G.; Abdelrahman, M.H.; Abdel-Hamid, M.K.; Reshma, R.S.; Yogeeswari, P.; Aboul-Fadl, T.; Sriram, D. Synthesis and anti-mycobacterial activity of 4-(4-phenyl-1H-1,2,3-triazol-1-yl)salicylhydrazones: Revitalizing an old drug. Arch. Pharm. Res., 2017, 40(2), 168-179.
[http://dx.doi.org/10.1007/s12272-016-0882-x] [PMID: 28028696]
[41]
Li, K.J.; Qu, R.Y.; Liu, Y.C.; Yang, J.F.; Devendar, P.; Chen, Q.; Niu, C.W.; Xi, Z.; Yang, G.F. Design, synthesis, and herbicidal activity of pyrimidine–biphenyl hybrids as novel acetohydroxyacid synthase inhibitors. J. Agric. Food Chem., 2018, 66(15), 3773-3782.
[http://dx.doi.org/10.1021/acs.jafc.8b00665] [PMID: 29618205]
[42]
Qu, R.Y.; Yang, J.F.; Liu, Y.C.; Chen, Q.; Hao, G.F.; Niu, C.W.; Xi, Z.; Yang, G.F. Computational design of novel inhibitors to overcome weed resistance associated with acetohydroxyacid synthase (AHAS) P197L mutant. Pest Manag. Sci., 2017, 73(7), 1373-1381.
[http://dx.doi.org/10.1002/ps.4460] [PMID: 27748000]
[43]
Qu, R.Y.; Yang, J.F.; Devendar, P.; Kang, W.M.; Liu, Y.C.; Chen, Q.; Niu, C.W.; Xi, Z.; Yang, G.F. Discovery of New 2-[(4,6-Dimethoxy-1,3,5-triazin-2-yl)oxy]-6-(substituted phenoxy)benzoic Acids as Flexible Inhibitors of Arabidopsis thaliana Acetohydroxyacid Synthase and Its P197L Mutant. J. Agric. Food Chem., 2017, 65(51), 11170-11178.
[http://dx.doi.org/10.1021/acs.jafc.7b05198] [PMID: 29186952]
[44]
Qu, R.Y.; Yang, J.F.; Chen, Q.; Niu, C.W.; Xi, Z.; Yang, W.C.; Yang, G.F. Fragment-based discovery of flexible inhibitor targeting wild-type acetohydroxyacid synthase and P197L mutant. Pest Manag. Sci., 2020, 3403-3412.
[http://dx.doi.org/10.1002/ps.5739] [PMID: 31943722]
[45]
Pretorius, S.I.; Breytenbach, W.J.; de Kock, C.; Smith, P.J.; N’Da, D.D. Synthesis, characterization and antimalarial activity of quinoline-pyrimidine hybrids. Bioorg. Med. Chem., 2013, 21(1), 269-277.
[http://dx.doi.org/10.1016/j.bmc.2012.10.019] [PMID: 23168082]
[46]
Smit, F.J.; N’da, D.D. Synthesis, in vitro antimalarial activity and cytotoxicity of novel 4-aminoquinolinyl-chalcone amides. Bioorg. Med. Chem., 2014, 22(3), 1128-1138.
[http://dx.doi.org/10.1016/j.bmc.2013.12.032] [PMID: 24411478]
[47]
Musonda, C.C.; Gut, J.; Rosenthal, P.J.; Yardley, V.; Carvalho de Souza, R.C.; Chibale, K. Application of multicomponent reactions to antimalarial drug discovery. Part 2: New antiplasmodial and antitrypanosomal 4-aminoquinoline γ- and δ-lactams via a ‘catch and release’ protocol. Bioorg. Med. Chem., 2006, 14(16), 5605-5615.
[http://dx.doi.org/10.1016/j.bmc.2006.04.035] [PMID: 16690319]
[48]
Verlinden, B.K.; Niemand, J.; Snyman, J.; Sharma, S.K.; Beattie, R.J.; Woster, P.M.; Birkholtz, L.M. Discovery of novel alkylated (bis)urea and (bis)thiourea polyamine analogues with potent antimalarial activities. J. Med. Chem., 2011, 54(19), 6624-6633.
[http://dx.doi.org/10.1021/jm200463z] [PMID: 21882831]
[49]
N’Da, D.D.; Smith, P.J. Synthesis, in vitro antiplasmodial and antiproliferative activities of a series of quinoline–ferrocene hybrids. Med. Chem. Res., 2014, 23(3), 1214-1224.
[http://dx.doi.org/10.1007/s00044-013-0748-4]
[50]
N’Da, D.D.; Breytenbach, J.C.; Smith, P.J.; Lategan, C. Synthesis and in vitro antiplasmodial activity of quinoline-ferrocene esters. Arzneimittelforschung, 2011, 61(6), 358-365.
[http://dx.doi.org/10.1055/s-0031-1296211] [PMID: 21827047]
[51]
Botta, L.; Filippi, S.; Bizzarri, B.M.; Zippilli, C.; Meschini, R.; Pogni, R.; Baratto, M.C.; Villanova, L.; Saladino, R. Synthesis and evaluation of artemisinin-based hybrid and dimer derivatives as antimelanoma agents. ACS Omega, 2019, 5(1), 243-251.
[http://dx.doi.org/10.1021/acsomega.9b02600] [PMID: 31956771]
[52]
Fröhlich, T.; Reiter, C.; Saeed, M.E.M.; Hutterer, C.; Hahn, F.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Marschall, M.; Efferth, T.; Tsogoeva, S.B. Synthesis of Thymoquinone-Artemisinin Hybrids: New Potent Antileukemia, Antiviral, and Antimalarial Agents. ACS Med. Chem. Lett., 2017, 9(6), 534-539.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00412] [PMID: 29937978]
[53]
Patel, K.V.; Singh, A. Synthesis, characterization and chelating properties of benzimidazole-salicylic acid combined molecule. J. Chem., 2009, 6, 281-288.
[54]
Vadnerkar, G.; Dhaneshwar, S. Macromolecular prodrug of 4-aminosalicylic acid for targeted delivery to inflamed colon. Curr. Drug Discov. Technol., 2013, 10(1), 16-24.
[PMID: 22725691]
[55]
Hassan, G.S.; Soliman, G.A. Design, synthesis and anti-ulcerogenic effect of some of furo-salicylic acid derivatives on acetic acid-induced ulcerative colitis. Eur. J. Med. Chem., 2010, 45(9), 4104-4112.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.071] [PMID: 20573425]
[56]
Dhaneshwar, S.S. Colon-specific prodrugs of 4-aminosalicylic acid for inflammatory bowel disease. World J. Gastroenterol., 2014, 20(13), 3564-3571.
[http://dx.doi.org/10.3748/wjg.v20.i13.3564] [PMID: 24707139]
[57]
Wadher, S.J.; Karande, N.A.; Sonawane, S.D.; Yeole, P.G. Synthesis and biological evaluation of schiff base and 4-thiazolidinones of amino salicylic acid and their derivatives as an antimicrobial agent. Int. J. Chemtech Res., 2009, 1, 1303-1307.
[58]
Patole, J.; Shingnapurkar, D.; Padhye, S.; Ratledge, C. Schiff base conjugates of p-aminosalicylic acid as antimycobacterial agents. Bioorg. Med. Chem. Lett., 2006, 16(6), 1514-1517.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.035] [PMID: 16413184]
[59]
Zhang, J.; Shan, Y.; Pan, X.; Wang, C.; Xu, W.; He, L. Molecular docking, 3D-QSAR studies, and in silico ADME prediction of p-aminosalicylic acid derivatives as neuraminidase inhibitors. Chem. Biol. Drug Des., 2011, 78(4), 709-717.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01179.x] [PMID: 21752201]
[60]
Dhaneshwar, S.S.; Chail, M.; Patil, M.; Naqvi, S.; Vadnerkar, G. Colon-specific mutual amide prodrugs of 4-aminosalicylic acid for their mitigating effect on experimental colitis in rats. Eur. J. Med. Chem., 2009, 44(1), 131-142.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.035] [PMID: 18472188]
[61]
Sheng, S.F.; Zheng, H.X.; Liu, J.; Zhao, Z.B. Synthesis of phenol-class azo derivatives of 4-aminosalicylic acid. Chin. Chem. Lett., 2008, 19, 419-422.
[http://dx.doi.org/10.1016/j.cclet.2008.01.042]
[62]
Wani, W.A.; Jameel, E.; Baig, U.; Mumtazuddin, S.; Hun, L.T. Ferroquine and its derivatives: New generation of antimalarial agents. Eur. J. Med. Chem., 2015, 101, 534-551.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.009] [PMID: 26188909]
[63]
Singh, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. 4-Aminoquinoline-ferrocenyl-chalcone conjugates: Synthesis and anti-plasmodial evaluation. Eur. J. Med. Chem., 2017, 125, 269-277.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.044] [PMID: 27688182]
[64]
Manohar, S.; Rajesh, U.C.; Khan, S.I.; Tekwani, B.L.; Rawat, D.S. Novel 4-aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity. ACS Med. Chem. Lett., 2012, 3(7), 555-559.
[http://dx.doi.org/10.1021/ml3000808] [PMID: 24900509]
[65]
Kumar, D.; Khan, S.I.; Ponnan, P.; Rawat, D.S. Triazine-pyrimidine based molecular hybrids: Synthesis, docking studies and evaluation of antimalarial activity. New J. Chem., 2014, 38, 5087-5095.
[http://dx.doi.org/10.1039/C4NJ00978A]
[66]
Sun, W.; Tanaka, T.Q.; Magle, C.T.; Huang, W.; Southall, N.; Huang, R.; Dehdashti, S.J.; McKew, J.C.; Williamson, K.C.; Zheng, W. Chemical signatures and new drug targets for gametocytocidal drug development. Sci. Rep., 2014, 4, 3743.
[http://dx.doi.org/10.1038/srep03743] [PMID: 24434750]
[67]
Guidelines for the Treatment of Malaria. 3rd edition. Geneva: World Health Organization; 2015. Annex 5, Pharmacology of antimalarial drugs. https://www.ncbi.nlm.nih.gov/books/NBK294433/ 2020.
[68]
Grellepois, F.; Grellier, P.; Bonnet-Delpon, D.; Bégué, J.P. Design, synthesis and antimalarial activity of trifluoromethylartemisinin-mefloquine dual molecules. Chem. Bio. Chem., 2005, 6(4), 648-652.
[http://dx.doi.org/10.1002/cbic.200400347] [PMID: 15723441]
[69]
Feng, T.S.; Guantai, E.M.; Nell, M.; van Rensburg, C.E.; Ncokazi, K.; Egan, T.J.; Hoppe, H.C.; Chibale, K. Effects of highly active novel artemisinin-chloroquinoline hybrid compounds on β-hematin formation, parasite morphology and endocytosis in Plasmodium falciparum. Biochem. Pharmacol., 2011, 82(3), 236-247.
[http://dx.doi.org/10.1016/j.bcp.2011.04.018] [PMID: 21596024]
[70]
Wang, N.; Wicht, K.J.; Shaban, E.; Ngoc, T.A.; Wang, M.Q.; Hayashi, I.; Hossain, M.I.; Takemasa, Y.; Kaiser, M.; El Sayed, I.E.; Egan, T.J. Synthesis and evaluation of artesunate-indoloquinoline hybrids as antimalarial drug candidates. Med-ChemComm., 2014, 5(7), 927-931.
[http://dx.doi.org/10.1039/C4MD00091A]
[71]
Pérez, B.; Teixeira, C.; Albuquerque, I.S.; Gut, J.; Rosenthal, P.J.; Prudêncio, M.; Gomes, P. PRIMACINS, N-cinnamoyl-primaquine conjugates, with improved liver-stage antimalarial activity. Med-ChemComm., 2012, 3(9), 1170-1172.
[http://dx.doi.org/10.1039/c2md20113e]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy