Skip to main content
Log in

Updated Lagrangian particle hydrodynamics (ULPH) modeling of solid object water entry problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Solid object water entry is a common problem in various natural, industrial and military applications, which involves large deformation of free surfaces and violent fluid–structure interactions. In computational fluid dynamics (CFD), this is a type of problem that tests the robustness and capacity of any CFD numerical algorithm. In this work, the newly-developed updated Lagrangian particle hydrodynamics (ULPH) method, which is a fluid version of peridynamics, is enhanced and applied to simulate solid object water entry problems. ULPH method is Lagrangian meshfree particle method that can ensure the specific free surface conditions automatically satisfied. The density filter and artificial viscosity diffusion are adopted in the ULPH scheme to stabilize and smooth the pressure field. In the process of a rigid body entering water, it may induce negative pressure in some areas of impact region, which can cause spurious tensile instability in some meshfree particle simulations, such as SPH and ULPH. A tensile instability control technique based on the ULPH framework has been developed to overcome the numerical instability. To validate the stability and accuracy of the ULPH approach in simulating water entry problems, several 2D and 3D examples of water entry have been carried out in this work. The necking and cavity pinch-off phenomena are visible in the numerical results. The simulation results of the ULPH method are well compared with experimental data and other numerical solutions. The water crown, cavity shapes and stream pattern formed around the rigid body entering the water can be well captured. The computation results show that the ULPH method has the ability to simulate the complex solid object water entry precess accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yao E (2014) Vertical water-entry of bullet-shaped projectiles. J Appl Math Phys 2(06):323

    Article  Google Scholar 

  2. Li D, Zhang J, Zhang M, Huang B, Ma X, Wang G (2019) Experimental study on water entry of spheres with different surface wettability. Ocean Eng 187:106123

    Article  Google Scholar 

  3. Mirzaei M, Taghvaei H, Golneshan AA (2020) Improvement of cavity shape modeling in water-entry of circular cylinders by considering the cavity memory effect. Appl Ocean Res 97:102073

    Article  Google Scholar 

  4. Al-Saad M, Suarez CA, Obeidat A, Kulasegaram S (2020) Application of smooth particle hydrodynamics method for modelling blood flow with thrombus formation. CMES Comput Model Eng Sci 122(3):831–862

    Google Scholar 

  5. Iranmanesh A, Passandideh-Fard M (2017) A three-dimensional numerical approach on water entry of a horizontal circular cylinder using the volume of fluid technique. Ocean Eng 130:557–566

    Article  Google Scholar 

  6. Vincent L, Xiao T, Yohann D, Jung S, Kanso E (2018) Dynamics of water entry. J Fluid Mech 846:508

    Article  Google Scholar 

  7. Sun T, Wang H, Zou L, Zong Z, Li H (2019a) Experimental study on the cavity dynamics of oblique impact of sphere on a viscous liquid floating on water. Ocean Eng 194:106597

    Article  Google Scholar 

  8. Sun P, Zhang A-M, Marrone S, Ming F (2018a) An accurate and efficient SPH modeling of the water entry of circular cylinders. Appl Ocean Res 72:60–75

    Article  Google Scholar 

  9. Worthington AM (1908) A study of splashes. Green, and Company, Longmans, Harlow

    Google Scholar 

  10. Abelson H (1970) Pressure measurements in the water-entry cavity. J Fluid Mech 44(1):129–144

    Article  MathSciNet  Google Scholar 

  11. Shams A, Jalalisendi M, Porfiri M (2015) Experiments on the water entry of asymmetric wedges using particle image velocimetry. Phys Fluids 27(2):027103

    Article  Google Scholar 

  12. Marston J, Truscott T, Speirs N, Mansoor M, Thoroddsen S (2016) Crown sealing and buckling instability during water entry of spheres. J Fluid Mech 794:506–529

    Article  MathSciNet  Google Scholar 

  13. Von Karman T (1929) The impact on seaplane floats during landing, Technical report 321, National Adbisory Committee for Aeroautics

  14. Dobrovol’Skaya Z (1969) On some problems of similarity flow of fluid with a free surface. J Fluid Mech 36(4):805–829

    Article  MATH  Google Scholar 

  15. Lee M, Longoria R, Wilson D (1997) Cavity dynamics in high-speed water entry. Phys Fluids 9(3):540–550

    Article  MathSciNet  MATH  Google Scholar 

  16. Takagi K (2004) Numerical evaluation of three-dimensional water impact by the displacement potential formulation. J Eng Math 48(3–4):339–352

    Article  MATH  Google Scholar 

  17. Gu H, Qian L, Causon D, Mingham C, Lin P (2014) Numerical simulation of water impact of solid bodies with vertical and oblique entries. Ocean Eng 75:128–137

    Article  Google Scholar 

  18. Hou Z, Sun T, Quan X, Zhang G, Sun Z, Zong Z (2018) Large eddy simulation and experimental investigation on the cavity dynamics and vortex evolution for oblique water entry of a cylinder. Appl Ocean Res 81:76–92

    Article  Google Scholar 

  19. Facci A, Porfiri M, Ubertini S (2016) Three-dimensional water entry of a solid body: A computational study. J Fluids Struct 66:36–53

    Article  Google Scholar 

  20. Luo H, Wang S, SC G (2011) Numerical prediction of slamming loads on a rigid wedge subjected to water entry using an explicit finite element method. Adv Mar Struct:41–48

  21. Zhu X, Faltinsen O, Hu C (2005) Water entry and exit of a horizontal circular cylinder. Int Conf Offshore Mech Arctic Eng 41952:647–658

    Google Scholar 

  22. Zarghami A, Porfiri M, Jannelli E, Ubertini S (2015) Front-tracking lattice Boltzmann simulation of a wedge water entry. AIP Conf Proc 1648(1):570007

    Article  Google Scholar 

  23. Zhang Y, Zou Q, Greaves D, Reeve D, Hunt-Raby A, Graham D, James P, Lv X (2010) A level set immersed boundary method for water entry and exit. Commun Comput Phys 8(2):265–288

    Article  MathSciNet  MATH  Google Scholar 

  24. Monaghan J (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30(1):543–574

    Article  Google Scholar 

  25. Liu Y, Qiao Y, Li T (2019) A correct smoothed particle method to model structure–ice interaction. CMES Comput Model Eng Sci 120(1):177–201

    Google Scholar 

  26. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421–434

    Article  Google Scholar 

  27. Zhang F, Zhang X, Sze KY, Lian Y, Liu Y (2017a) Incompressible material point method for free surface flow. J Comput Phys 330:92–110

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen Z-P, Zhang X, Sze KY, Kan L, Qiu X-M (2018) vp material point method for weakly compressible problems. Comput Fluids 176:170–181

    Article  MathSciNet  MATH  Google Scholar 

  29. Pan X, Wu C-T, Hu W (2020) A semi-implicit stabilized particle Galerkin method for incompressible free surface flow simulations. Int J Numer Methods Eng 121(17):3979–4002

    Article  MathSciNet  Google Scholar 

  30. Pan X, Wu C, Hu W, Wu Y (2019) A momentum-consistent stabilization algorithm for Lagrangian particle methods in the thermo-mechanical friction drilling analysis. Comput Mech 64(3):625–644

    Article  MathSciNet  MATH  Google Scholar 

  31. Cheng H, Ming F, Sun P, Sui Y, Zhang A-M (2020) Ship hull slamming analysis with smoothed particle hydrodynamics method. Appl Ocean Res 101:102268

    Article  Google Scholar 

  32. Oger G, Doring M, Alessandrini B, Ferrant P (2006) Two-dimensional SPH simulations of wedge water entries. J Comput Phys 213(2):803–822

    Article  MathSciNet  MATH  Google Scholar 

  33. Skillen A, Lind S, Stansby PK, Rogers BD (2013) Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction. Comput Methods Appl Mech Eng 265:163–173

    Article  MathSciNet  MATH  Google Scholar 

  34. Gong K, Shao S, Liu H, Lin P, Gui Q (2019) Cylindrical smoothed particle hydrodynamics simulations of water entry. J Fluids Eng 141:7

    Article  Google Scholar 

  35. Marrone S, Colagrossi A, Chiron L, De Leffe M, Le Touzé D (2018) High-speed water impacts of flat plates in different ditching configuration through a Riemann-ALE SPH model. J Hydrodyn 30(1):38–48

    Article  Google Scholar 

  36. Sun P, Colagrossi A, Marrone S, Antuono M, Zhang A (2018b) Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows. Comput Phys Commun 224:63–80

    Article  MathSciNet  Google Scholar 

  37. Zhang C, Hu X, Adams N (2017b) A weakly compressible SPH method based on a low-dissipation Riemann solver. J Comput Phys 335:605–620

    Article  MathSciNet  MATH  Google Scholar 

  38. Rezavand M, Zhang C, Hu X (2020) A weakly compressible SPH method for violent multi-phase flows with high density ratio. J Comput Phys 402:109092

    Article  MathSciNet  MATH  Google Scholar 

  39. Ren H, Zhuang X, Rabczuk T (2019) A dual-support smoothed particle hydrodynamics for weakly compressible fluid inspired by the dual-horizon peridynamics. CMES Comput Model Eng Sci 121(2):353–383

    Google Scholar 

  40. Sun Z, Djidjeli K, Xing JT, Cheng F (2016) Coupled MPS-modal superposition method for 2D nonlinear fluid-structure interaction problems with free surface. J Fluids Struct 61:295–323

    Article  Google Scholar 

  41. Zhang Y, Wan D (2018) MPS-FEM coupled method for sloshing flows in an elastic tank. Ocean Eng 152:416–427

    Article  Google Scholar 

  42. Sun Z, Zhang G, Zong Z, Djidjeli K, Xing J (2019b) Numerical analysis of violent hydroelastic problems based on a mixed MPS-mode superposition method. Ocean Eng 179:285–297

    Article  Google Scholar 

  43. Hu P, Xue L, Mao S, Kamakoti R, Zhao H, Dittakavi N, Ni K, Wang Z, Li Q (2010) Material point method applied to fluid–structure interaction (FSI)/aeroelasticity problems. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 1464

  44. Gilmanov A, Acharya S (2008) A hybrid immersed boundary and material point method for simulating 3D fluid-structure interaction problems. Int J Numer Meth Fluids 56(12):2151–2177

    Article  MATH  Google Scholar 

  45. Tu Q, Li S (2017) An updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluids. J Comput Phys 348:493–513

    Article  MathSciNet  MATH  Google Scholar 

  46. Bergel GL, Li S (2016) The total and updated lagrangian formulations of state-based peridynamics. Comput Mech 58(2):351–370

    Article  MathSciNet  MATH  Google Scholar 

  47. Li S, Liu WK (1998) Synchronized reproducing kernel interpolant via multiple wavelet expansion. Comput Mech 21(1):28–47

    Article  MathSciNet  MATH  Google Scholar 

  48. Yan J, Li S, Zhang A-M, Kan X, Sun P-N (2019) Updated Lagrangian particle hydrodynamics (ULPH) modeling and simulation of multiphase flows. J Comput Phys 393:406–437

    Article  MathSciNet  MATH  Google Scholar 

  49. Yan J, Li S, Kan X, Zhang A-M, Lai X (2020) Higher-order nonlocal theory of Updated Lagrangian Particle Hydrodynamics (ULPH) and simulations of multiphase flows. Comput Methods Appl Mech Eng 368:113176

    Article  MathSciNet  MATH  Google Scholar 

  50. Madenci E, Barut A, Futch M (2016) Peridynamic differential operator and its applications. Comput Methods Appl Mech Eng 304:408–451

    Article  MathSciNet  MATH  Google Scholar 

  51. Gao Y, Oterkus S (2019) Non-local modeling for fluid flow coupled with heat transfer by using peridynamic differential operator. Eng Anal Bound Elem 105:104–121

    Article  MathSciNet  MATH  Google Scholar 

  52. Ren H, Zhuang X, Rabczuk T (2020a) A nonlocal operator method for solving partial differential equations. Comput Methods Appl Mech Eng 358:112621

    Article  MathSciNet  MATH  Google Scholar 

  53. Ren H, Zhuang X, Rabczuk T (2020b) Nonlocal operator method with numerical integration for gradient solid. Comput Struct 233:106235

    Article  Google Scholar 

  54. Ren H, Zhuang X, Rabczuk T (2020c) A higher order nonlocal operator method for solving partial differential equations. Comput Methods Appl Mech Eng 367:113132

    Article  MathSciNet  MATH  Google Scholar 

  55. Hillman M, Pasetto M, Zhou G (2020) Generalized reproducing kernel peridynamics: unification of local and non-local meshfree methods, non-local derivative operations, and an arbitrary-order state-based peridynamic formulation. Comput Part Mech 7(2):435–469

    Article  Google Scholar 

  56. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226

    Article  MATH  Google Scholar 

  57. Chen J, Beraun J (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Methods Appl Mech Eng 190(1–2):225–239

    Article  MATH  Google Scholar 

  58. Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183(12):2570–2580

    Article  MathSciNet  Google Scholar 

  59. Marrone S, Colagrossi A, Di Mascio A, Le Touzé D (2015) Prediction of energy losses in water impacts using incompressible and weakly compressible models. J Fluids Struct 54:802–822

    Article  Google Scholar 

  60. Li S, Liu W (2004) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  61. Liu W, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Methods Appl Mech Eng 143(1):113–154

    Article  MathSciNet  MATH  Google Scholar 

  62. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part I-formulation and theory. Int J Numer Meth Eng 45(3):251–288

    Article  MATH  Google Scholar 

  63. Du Q, Gunzburger M, Lehoucq RB, Zhou K (2013) A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math Models Methods Appl Sci 23(03):493–540

    Article  MathSciNet  MATH  Google Scholar 

  64. Lai X, Liu L, Li S, Zeleke M, Liu Q, Wang Z (2018) A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials. Int J Impact Eng 111:130–146

    Article  Google Scholar 

  65. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475

    Article  MATH  Google Scholar 

  66. Colagrossi A, Bouscasse B, Antuono M, Marrone S (2012) Particle packing algorithm for SPH schemes. Comput Phys Commun 183(8):1641–1653

    Article  MathSciNet  MATH  Google Scholar 

  67. Marrone S, Colagrossi A, Le Touzé D, Graziani G (2010) Fast free-surface detection and level-set function definition in SPH solvers. J Comput Phys 229(10):3652–3663

    Article  MATH  Google Scholar 

  68. Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075

    Article  MathSciNet  Google Scholar 

  69. Bonet J, Lok T-S (1999) Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput Methods Appl Mech Eng 180(1–2):97–115

    Article  MathSciNet  MATH  Google Scholar 

  70. Sun P, Ming F, Zhang A (2015) Numerical simulation of interactions between free surface and rigid body using a robust SPH method. Ocean Eng 98:32–49

    Article  Google Scholar 

  71. Gong K, Liu H, Wang B-L (2009) Water entry of a wedge based on SPH model with an improved boundary treatment. J Hydrodyn 21(6):750–757

    Article  Google Scholar 

  72. Greenhow M, Lin W-M (1983) Nonlinear-free surface effects: experiments and theory. Technical report, Massachusetts Inst Of Tech Cambridge Dept Of Ocean Engineering

  73. Sun H, Faltinsen OM (2006) Water impact of horizontal circular cylinders and cylindrical shells. Appl Ocean Res 28(5):299–311

    Article  Google Scholar 

  74. Ma Z, Causon D, Qian L, Mingham C, Mai T, Greaves D, Raby A (2016) Pure and aerated water entry of a flat plate. Phys Fluids 28(1):016104

    Article  Google Scholar 

  75. Wei Z, Hu C (2014) An experimental study on water entry of horizontal cylinders. J Mar Sci Technol 19(3):338–350

    Article  MathSciNet  Google Scholar 

  76. Enriquez O, Peters I, Gekle S, Schmidt L, Versluis M, van der Meer D, Lohse D (2010) Collapse of nonaxisymmetric cavities. Phys Fluids 22(9):091104

    Article  Google Scholar 

Download references

Acknowledgements

JY and AZ are supported by National Key R&D Program of China (2018YFC0308900) and National Natural Science Foundation of China (Grant number 11672081). These supports are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Li, S., Kan, X. et al. Updated Lagrangian particle hydrodynamics (ULPH) modeling of solid object water entry problems. Comput Mech 67, 1685–1703 (2021). https://doi.org/10.1007/s00466-021-02014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02014-4

Keywords

Navigation