Skip to main content
Log in

Noninformative priors for the ratio of variabilities in a bivariate normal population

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

In this paper, we consider some objective priors for the ratio of variabilities in a bivariate normal distribution. We develop the first and second order matching priors and reference priors. We obtain that the second order matching prior matches the alternative coverage probabilities up to the same order. It is also an HPD matching priors. It turns out that the derived reference priors do not satisfy a second order matching criterion. The simulation result shows that the second order matching prior performs better than reference priors based on matching the target coverage probabilities in a frequentist sense. Finally, we show that the second order matching prior and reference priors produce confidence sets with an expected length shorter than the Cox and Reid adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, J. O., & Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200–207.

    Article  MathSciNet  Google Scholar 

  • Berger, J. O., & Bernardo, J. M. (1992). On the development of reference priors (with discussion). In J. M. Bernardo, et al. (Eds.), Bayesian Statistics IV (pp. 35–60). Oxford University Press.

    Google Scholar 

  • Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society B, 41, 113–147.

    MathSciNet  MATH  Google Scholar 

  • Box, G. E. P. & Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley.

    MATH  Google Scholar 

  • Brown, L. D. (1968). Inadmissibility of the usual estimators of scale parameters. Annals of Mathematical Statistics, 39, 29–48.

    Article  MathSciNet  Google Scholar 

  • Cox, D. R., & Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion). Journal of Royal Statistical Society B, 49, 1–39.

    MATH  Google Scholar 

  • Datta, G. S. (1996). On priors providing frequentist validity for Bayesian inference. Biometrika, 83, 287–298.

    Article  MathSciNet  Google Scholar 

  • Datta, G. S., & DiCiccio, T. J. (2001). On expected volumes of multidimensional confidence sets associated with the usual and adjusted likelihoods. Journal of Royal Statistical Society B, 63, 691–703.

    Article  MathSciNet  Google Scholar 

  • Datta, G. S., & Ghosh, J. K. (1995). On priors providing frequentist validity for Bayesian inference. Biometrika, 82, 37–45.

    Article  MathSciNet  Google Scholar 

  • Datta, G. S., & Ghosh, M. (1995). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357–1363.

    Article  MathSciNet  Google Scholar 

  • Datta, G. S., & Ghosh, M. (1996). On the invariance of noninformative priors. The Annal of Statistics, 24, 141–159.

    Article  MathSciNet  Google Scholar 

  • Datta, G. S., Ghosh, M., & Mukerjee, R. (2000). Some new results on probability matching priors. Calcutta Statistical Association Bulletin, 50, 179–192.

    Article  MathSciNet  Google Scholar 

  • Datta, G. S., & Mukerjee, R. (2004). Probability Matching Priors: Higher Order Asymptotics. Springer.

    Book  Google Scholar 

  • DiCiccio, T. J., & Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood. Journal of Royal Statistical Society B, 56, 397–408.

    MathSciNet  MATH  Google Scholar 

  • Gelfand, A. E., & Dey, D. K. (1988). On estimation of a variance ratio. Journal of Statistical Planning and Inference, 19, 121–131.

    Article  MathSciNet  Google Scholar 

  • Ghosh, M., & Kundu, S. (1996). Decision theoretic estimation of the variance ratio. Statistics & Decisions, 14, 161–175.

    MathSciNet  MATH  Google Scholar 

  • Ghosh, J. K., & Mukerjee, R. (1995). Frequentist validity of highest posterior density regions in the presence of nuisance parameters. Statistics & Decisions, 13, 131–139.

    MathSciNet  MATH  Google Scholar 

  • Iliopoulos, G. (2001). Decision theoretic estimation of the ratio of variances in a bivariate normal distribution. Annals of Institute of Statistical Mathematics, 53, 436–446.

    Article  MathSciNet  Google Scholar 

  • Kim, D. H., Kang, S. G., & Cho, J. S. (2000). Noninformative priors for stress-strength system in the Burr-type X model. Journal of the Korean Statistical Society, 29, 17–27.

    MathSciNet  Google Scholar 

  • Kim, Y., Lee, W. D., & Kang, S. G. (2020). A matching prior based on the modified profile likelihood for the common mean in multiple log-normal distributions. Statistical Papers, 61, 543–573.

    Article  MathSciNet  Google Scholar 

  • Kim, D. H., Lee, W. D., Kang, S. G., & Kim, Y. (2019). Noninformative priors for the between-group variance in the unbalanced one-way random effects model with heterogeneous error variances. Journal of Statistical Computation and Simulation, 89, 1935–1956.

    Article  MathSciNet  Google Scholar 

  • Madi, T. M. (1995). On invariant estimation of a normal variance ratio. Journal of Statistical Planning and Inference, 44, 349–357.

    Article  MathSciNet  Google Scholar 

  • Min, X., & Sun, D. (2013). A matching prior based on the modified profile likelihood in a generalized Weibull stress-strength model. The Canadian Journal of Statistics, 41, 83–97.

    Article  MathSciNet  Google Scholar 

  • Morgan, W. A. (1939). A test for the significance of the difference between the two variances in a sample from a normal bivariate population. Biometrika, 31, 13–19.

    MathSciNet  MATH  Google Scholar 

  • Mukerjee, R., & Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter: Higher order asymptotics. Biometrika, 80, 499–505.

    Article  MathSciNet  Google Scholar 

  • Mukerjee, R., & Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970–975.

    Article  MathSciNet  Google Scholar 

  • Mukerjee, R., & Reid, N. (1999a). On a property of probability matching priors: Matching the alternative coverage probabilities. Biometrika, 86, 333–340.

    Article  MathSciNet  Google Scholar 

  • Mukerjee, R., & Reid, N. (1999b). On confidence intervals associated with the usual and adjusted likelihoods. Journal of Royal Statistical Society B, 61, 945–954.

    Article  MathSciNet  Google Scholar 

  • Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Annals of the Institute of Statistical Mathematics, 42, 385–388.

    MathSciNet  MATH  Google Scholar 

  • Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics, Banach Center Publications, 16, 485–514.

    Article  MathSciNet  Google Scholar 

  • Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604–608.

    Article  MathSciNet  Google Scholar 

  • Ventura, L., Cabras, S., & Racugno, W. (2009). Prior distributions from pseudo-likelihoods in the presence of nuisance parameters. Journal of the American Statistical Association, 104, 768–774.

    Article  MathSciNet  Google Scholar 

  • Wang, W. (1999). On equivalence of two variances of a bivariate normal vector. Journal of Statistical Planning and Inference, 81, 279–292.

    Article  MathSciNet  Google Scholar 

  • Welch, B. L., & Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihood. Journal of Royal Statistical Society, B, 35, 318–329.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This Research was supported by Kyungpook National University Research Fund, 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dal Ho Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Proof of impropriety of posterior distribution

The posterior distribution of \((\theta _1,\ldots ,\theta _5)\) under the prior \(\pi (\theta _1,\ldots ,\theta _5)=\theta _1^{-1}\theta _2^{-1}\theta _3^{-1}\) is improper.

Proof

Under the prior \(\pi (\theta _1,\ldots ,\theta _5)=\theta _1^{-1}\theta _2^{-1}\theta _3^{-1}\), the joint posterior for \(\theta _1,\ldots ,\theta _5\) given \(\mathbf{Y}\) is

$$\begin{aligned} \pi (\theta _1,\ldots ,\theta _5 \vert {\mathbf{Y}})&\propto \theta _1^{-1}\theta _2^{-1}\theta _3^{-(1+{n\over 2})} \nonumber \\&\times \exp \left\{ -{1\over 2\theta _3} \sum _{i=1}^n \left[ \theta _1(\theta _2^2+\theta _3)^{1/2}(x_i-\theta _4)^2 -2\theta _2(x_i-\theta _4)(y_i-\theta _5)\right. \right. \nonumber \\&\left. \left. \quad +\theta _1^{-1}(\theta _2^2+\theta _3)^{1/2}(y_i-\theta _5)^2\right] \right\} . \end{aligned}$$
(22)

By integrating with respect to \(\theta _4\) and \(\theta _5\), we obtain

$$\begin{aligned} \pi (\theta _1,\theta _2,\theta _3 \vert {\mathbf{Y}})&\propto c_1 \theta _1^{-1}\theta _2^{-1}\theta _3^{-({n+1\over 2})} \\&\quad \times \exp \left\{ -{1\over 2\theta _3} \left[ \theta _1^{-1}(\theta _2^2+\theta _3)^{1/2}S_2^2 -2\theta _2S_{12}+\theta _1(\theta _2^2+\theta _3)^{1/2}S_1^2\right] \right\} , \end{aligned}$$

where \(c_1\) is a constant. Let \(\theta _1={\sigma _2 \over \sigma _1}\), \(\theta _2=\rho \sigma _1 \sigma _2\), and \(\theta _3= \sigma _1^2 \sigma _2^2 (1-\rho ^2)\). Then

$$\begin{aligned}&{\int _0^{\infty }\int _{-\infty }^{\infty }\int _{0}^{\infty } \pi (\theta _1,\theta _2,\theta _3 \vert {\mathbf{Y}}) d\theta _3d\theta _2d\theta _1}\\&\quad =\int _{-1}^1\int _0^{\infty }\int _{0}^{\infty } c_2 \rho ^{-1}(1-\rho ^2)^{-({n+1\over 2})} \sigma _1^{-n} \sigma _2^{-n}\\&\qquad \times \exp \left\{ -{1\over 2(1-\rho ^2)} \left[ {S_1^2\over \sigma _1^2}-2\rho {S_{12}\over \sigma _1\sigma _2} +{S_2^2\over \sigma _2^2}\right] \right\} d\sigma _1 d\sigma _2 d\rho , \end{aligned}$$

where \(c_2\) is a constant. Let \(u={\sigma _1\sigma _2 \over S_1S_2}\) and \(v={\sigma _1/S_1 \over \sigma _2/S_2}\). Then, the above integral reduces to

$$\begin{aligned} \int _{-1}^1\int _0^{\infty }\int _{0}^{\infty } c_3 \rho ^{-1}(1-\rho ^2)^{-({n+1\over 2})} u^{-n} v^{-1} e^{-{1\over 2(1-\rho ^2)u} [{1\over v}+v-2\rho r]} du dv d\rho , \end{aligned}$$

where \(c_3\) is a constant and \(r={S_{12}\over S_1S_2}\). Thus, if \(n-1>0\), then upon integrating out u,

$$\begin{aligned} \int _{-1}^1\int _{0}^{\infty } c_4 \rho ^{-1}(1-\rho ^2)^{n-3\over 2} v^{-1} \left( {1\over v}+v-2\rho r \right) ^{-(n-1)}dv d\rho , \end{aligned}$$

where \(c_4\) is a constant. Let \(z={{1\over 2}[v+(1/v)]-1\over {1\over 2}[v+(1/v)]-\rho r}\). Then, the above integral implies

$$\begin{aligned}&\int _{-1}^1\int _{0}^{1} c_5 \rho ^{-1}(1-\rho ^2)^{n-3\over 2} (1-r\rho )^{-(n-{3\over 2})} (1-z)^{n-2}\left[ z-{1\over 2}(1+r\rho )z^2\right] ^{-1/2} dz d\rho \\&=\int _{-1}^1 c_6 \rho ^{-1}(1-\rho ^2)^{n-3\over 2} (1-r\rho )^{-(n-{3\over 2})} H\left( {1\over 2};{1\over 2};n-{1\over 2};{1\over 2}(1+r\rho )\right) d\rho , \end{aligned}$$

where \(c_5\) and \(c_6\) are constants, and H is a hypergeometric function. The last integral does not converge on \((-1,1)\) because of \(\rho ^{-1}\). This completes the proof. \(\square \)

Apprndix 2. Derivation of reference prior

In this appendix, we derive the reference prior for the parameter grouping \(\{ \theta _1, \theta _3, \theta _2, \theta _4, \theta _5 \}\). We follow the algorithm given by Berger and Bernardo (1992).

The reference prior is developed by considering a sequence of compact subsets of the parameter space, and taking the limit of a sequence of priors as these compact subsets fill out the parameter space. The compact subsets were taken to be Cartesian products of sets of the form

$$\begin{aligned} \theta _1 \in [a_1,b_1], \theta _2 \in [a_2,b_2],\theta _3 \in [a_3,b_3],\theta _4 \in [a_4,b_4],\theta _5 \in [a_5,b_5]. \end{aligned}$$

Suppose the limit \(a_1, a_3\) tend to 0, then \(a_2, a_4, a_5\) will tend to \(-\infty \), and \(b_1, b_2, b_3, b_4, b_5\) will tend to \(\infty \). For the derivation of the reference, from the inverse of the Fisher information, we obtain

$$\begin{aligned} h_1= & {} \theta _1^{-2}\theta _3^{-1}(\theta _2^2+\theta _3), h_2=\theta _3^{-2}/4, h_3=(\theta _2^2+\theta _3)^{-1},\\ h_4= & {} \theta _1(\theta _2^2+\theta _3)^{-1/2}, h_5=\theta _1^{-1}\theta _3^{-1}(\theta _2^2+\theta _3)^{1/2}. \end{aligned}$$

In what follows, a subscripted K denotes a constant function independent of any parameters. However, any K may depend on the ranges of the parameters.

Step 1. Note that

$$\begin{aligned} \int _{a_5}^{b_5} h_5^{1/2} d\theta _5= & {} \int _{a_5}^{b_5}[\theta _1^{-1}\theta _3^{-1}(\theta _2^2+\theta _3)^{1/2}]^{1/2}d\theta _5\\= & {} [\theta _1^{-1}\theta _3^{-1}(\theta _2^2+\theta _3)^{1/2}]^{1/2}(b_5-a_5), \end{aligned}$$

so \(\pi _5^l \{\theta _5 \vert \theta _1,\theta _3,\theta _2,\theta _4\}=K_1\), where \(K_1=(b_5-a_5)^{-1}\).

Step 2. Now,

$$\begin{aligned} E_{\theta }^l\{\log h_4 \vert \theta _1,\theta _3,\theta _2,\theta _4 \}= & {} \int _{a_5}^{b_5} K_1 \log \{\theta _1(\theta _2^2+\theta _3)^{-1/2}\}d\theta _5\\= & {} \log \{\theta _1(\theta _2^2+\theta _3)^{-1/2}\}=K_2(\theta _1,\theta _2,\theta _3). \end{aligned}$$

It follows that

$$\begin{aligned} \int _{a_4}^{b_4} \exp [E_{\theta }^l\{\log h_4 \vert \theta _1,\theta _3,\theta _2,\theta _4 \}/2] d\theta _4 =\exp \{K_2(\theta _1,\theta _2,\theta _3)/2\}(b_4-a_4). \end{aligned}$$

Hence,

$$\begin{aligned} \pi _4^l \{\theta _4,\theta _5 \vert \theta _1,\theta _3,\theta _2 \}=K_1 (b_4-a_4)^{-1}=K_3. \end{aligned}$$

Step 3. Now,

$$\begin{aligned} E_{\theta }^l\{\log h_3 \vert \theta _1,\theta _3,\theta _2 \}= & {} \int _{a_4}^{b_4}\int _{a_5}^{b_5} K_3 \log \{ (\theta _2^2+\theta _3)^{-1} \}d\theta _5 d\theta _4\\= & {} \log \{ (\theta _2^2+\theta _3)^{-1}\}. \end{aligned}$$

Therefore,

$$\begin{aligned} \int _{a_2}^{b_2} \exp [E_{\theta }^l\{\log h_3 \vert \theta _1,\theta _3,\theta _2 \}/2] d\theta _2 =\log \left\{ {b_2+(b_2^2+\theta _3)^{1/2}\over a_2+(a_2^2+\theta _3)^{1/2}}\right\} =K_4(\theta _3). \end{aligned}$$

Thus

$$\begin{aligned} \pi _3^l \{\theta _2,\theta _4,\theta _5 \vert \theta _1,\theta _3 \}=[K_3/K_4(\theta _3)](\theta _2^2+\theta _3)^{-1/2}. \end{aligned}$$

Step 4. Now,

$$\begin{aligned} E_{\theta }^l\{\log h_2 \vert \theta _1,\theta _3 \}= & {} \int _{a_2}^{b_2}\int _{a_4}^{b_4}\int _{a_5}^{b_5} [K_3/K_4(\theta _3)](\theta _2^2+\theta _3)^{-1/2} \log \{ \theta _3^{-2}/4 \}d\theta _5 d\theta _4 d\theta _2\\= & {} \log \{ \theta _3^{-2}/4 \}. \end{aligned}$$

It follows that

$$\begin{aligned} \int _{a_3}^{b_3} \exp [E_{\theta }^l\{\log h_2 \vert \theta _1,\theta _3 \}/2] d\theta _3 = {1\over 2}\log \left\{ {b_3\over a_3} \right\} . \end{aligned}$$

Hence,

$$\begin{aligned} \pi _2^l \{\theta _3,\theta _2,\theta _4,\theta _5 \vert \theta _1 \}=[K_5/K_4(\theta _3)]\theta _3^{-1}(\theta _2^2+\theta _3)^{-1/2}, \end{aligned}$$

where \(K_5=K_3/\log \left\{ {b_3\over a_3}\right\} \).

Step 5. Now,

$$\begin{aligned} E_{\theta }^l\{\log h_1 \vert \theta _1 \}= & {} \int _{a_3}^{b_3}\int _{a_2}^{b_2}\int _{a_4}^{b_4}\int _{a_5}^{b_5} [K_5/K_4(\theta _3)]\theta _3^{-1}(\theta _2^2+\theta _3)^{-1/2}\\&\times \log \{ \theta _1^{-2}\theta _3^{-1}(\theta _2^2+\theta _3) \} d\theta _5 d\theta _4 d\theta _2 d\theta _3\\= & {} K_6 +\log \{\theta _1^{-2}\}. \end{aligned}$$

So,

$$\begin{aligned} \int _{a_1}^{b_1} \exp \left[ E_{\theta }^l\{\log h_1 \vert \theta _1 \}/2\right] d\theta _1 = K_7\log \left\{ {b_1\over a_1} \right\} . \end{aligned}$$

Then,

$$\begin{aligned} \pi _1^l \{\theta _1,\theta _3,\theta _2,\theta _4,\theta _5 \} =[K_8/K_4(\theta _3)]\theta _1^{-1}\theta _3^{-1}(\theta _2^2+\theta _3)^{-1/2}, \end{aligned}$$

where \(K_8=K_5{\exp \{K_6/2 \}\over K_7 \log \{{b_1/ a_1}\}}\). Therefore, the prior reference is given by

$$\begin{aligned} \pi _1 \{\theta _1,\theta _3,\theta _2,\theta _4,\theta _5 \} \propto \theta _1^{-1}\theta _3^{-1}(\theta _2^2+\theta _3)^{-1/2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.H., Kang, S.G., Lee, W.D. et al. Noninformative priors for the ratio of variabilities in a bivariate normal population. J. Korean Stat. Soc. 50, 874–890 (2021). https://doi.org/10.1007/s42952-021-00119-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-021-00119-3

Keywords

Navigation