Skip to main content
Log in

Siderite decomposition at room temperature conditions for CO2 capture applications

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The decomposition of synthetic siderite (FeCO3) in air atmosphere at room temperature conditions was studied. Siderite was formed by mechanochemical reaction of Fe3O4 and graphite at high CO2 pressure in the presence of water. Kinetics of decomposition reaction was studied over period up to 9 days and it is shown that decomposition reaction obeys geometrical contraction solid-state reaction mechanism model. It was found that the water influences not only the kinetics of siderite formation but also its stability. Siderite completely decomposes at ambient conditions yielding magnetite (Fe3O4) and hematite (Fe2O3) which can reversibly re-absorb carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alkaç V, Atalay Ü (2008) Kinetics of thermal decomposition of Hekimhan-Deveci siderite ore samples. Int J Miner Process 87:120–128

    Article  Google Scholar 

  • Bale C, Chartrand P, Degterov S, Eriksson G, Hack K, Ben Mahfoud K, Melancon J, Pelton A, Petersen S (2002) Factsage thermochemical software and databases. Calphad 26:189–228

    Article  CAS  Google Scholar 

  • Bello V, Idem R (2005) Comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases. Ind Eng Chem Res 45:2569–2579

    Article  Google Scholar 

  • Breckenridge W, Holiday A, Ong J O, Sharp C (2000) Use of SELEXOL process in coke gasification to ammonia project: In Proceedings of the Laurance Reid Gas Conditioning Conference. pp397-418

  • Chai NAL (1994) Enthalpy of formation of siderite and its application in phase equilibrium calculation. Am Mineral 79:921–929

    CAS  Google Scholar 

  • Cheng-Hsiu Y, Huang C-H, Tan C-S (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769

    Article  Google Scholar 

  • Criado J, Gonzalez M, Macias M (1988) Influence of grinding of both the stability and thermal decomposition mechanism of siderite. Thermochimica 135:219–223

    Article  CAS  Google Scholar 

  • Cullinage T, Rochelle G (2004) Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine. Chem Eng Sci 59:3619–3630

    Article  Google Scholar 

  • Das S (2016) Temperature-induced phase and microstructural transformations in a synthesized iron carbonate (siderite) complex. Mater Des 92:189–199

    Article  CAS  Google Scholar 

  • Ding J, Miao W, Pirault E, Street R, Mc Cormick P (1998) Structural evolution of Fe + Fe2O3 during mechanical milling. J Magn Magn Mater 177:933–934

    Article  Google Scholar 

  • Feng Z, Yu Y, Liu G, Chen W (2011) Kinetics of the thermal decomposition of wangjiatan siderite. J Wuhan Univ Technol Matter 1:523–526

    Article  Google Scholar 

  • Figueroa, Fout T, Plasynski S, Srivastava R (2008) Advances in CO2 capture technology—the U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenhouse Gas Control 2:9–20

    Article  CAS  Google Scholar 

  • Folger P (2013) Carbon capture: a technology assessment, de congressional research service report. University of Nebraska, Lincoln

    Google Scholar 

  • Fosbøl P, Thomsen K, Stenby H (2010) Review and recommended thermodynamic properties of FeCO3. Corros Eng Sci Technol 45:114–135

    Article  Google Scholar 

  • Gallagher P, Warne SJ (1981) Thermomagnetometry and thermal decomposition of siderite. Thermochimca 43:253–267

    Article  CAS  Google Scholar 

  • Gheisari K, Javadpour S, Oh J, Ghaffari M (2009) The effect of milling speed on the structural properties of mechanically alloyed Fe–45%Ni powders. J Alloy Compd 472:416–420

    Article  CAS  Google Scholar 

  • Gotor F, Macías M, Ortega A, Criado J (2000) Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples. Phys Chem Minerals 27:495–503

    Article  CAS  Google Scholar 

  • Hammersley AP (1997) FIT2D: an introduction and overview. European Synchrotron Radiation Facility Internal Report ESRF97HA02T, 68-58.

  • Han Y, Winston Ho W (2018) Recent advances in polymeric membranes for CO2 capture. Chin J Chem Eng 26:2238–2254

    Article  CAS  Google Scholar 

  • Han K, Ahn CK, Su Lee M (2014) Performance of an ammonia-based CO2 capture pilot facility in iron and steel industry. Int J Greenhouse Gas Control 27:239–246

    Article  CAS  Google Scholar 

  • Jagtap S, Pande A, Gokarn A (1992) Kinetics of thermal decomposition of siderite: effect of particle size. Int J Miner Process 36:113–124

    Article  CAS  Google Scholar 

  • Kang S (2020) First-principles evaluation of the potential of using Mg2SiO4, Mg2VO4, and Mg2GeO4 for CO2 capture. J CO2 Utiliz 42:101293

    Article  CAS  Google Scholar 

  • Kumar S (2014) The effect of elevated pressure, temperature and particles morphology on the carbon dioxide capture using zinc oxide. J CO2 Utiliz 8:60–66

    Article  CAS  Google Scholar 

  • Kumar S, Saxena S (2014) A comparative study of CO2 sorption properties for different oxides. Mater Renew Sustain Energy 3:1–15

    Google Scholar 

  • Kumar S, Saxena S, Drozd V, Durygin A (2015a) An experimental investigation of mesoporous MgO as a potential pre-combustion CO2 sorbent. Mater Renew Sustain Energy 4–8

  • Kumar S, Drozd V, Durygin A, Saxena S (2015b) Capturing CO2 Emissions in the Iron Industries using a Magnetite-Iron Mixture. Energ Technol. https://doi.org/10.1002/ente.201500451

    Article  Google Scholar 

  • Larson A, Von Dreele R (2004) General structure analysis system (GSAS). Los Alamos National Laboratory REport LAUR, pp 87–748

    Google Scholar 

  • Luo Y, Zhu D, Pan J, Zhou X (2016) Thermal decomposition behaviour and kinetics of Xinjiang siderite ore. Miner Process Extr Metall 125:17–25

    Article  CAS  Google Scholar 

  • Merkel T, Lin H, Wei X, Baker R (2009) Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci 359:126–139

    Article  Google Scholar 

  • Mora E, Sarmiento A, Vera E, Drozd V, Durygin A, Chen J, Saxena S (2019a) Iron oxides as efficient sorbents for CO2 capture. J Market Res 8:2944–2956

    Google Scholar 

  • Mora E, Sarmiento A, Vera E, Drozd V, Durygin A, Chen J, Saxena S (2019b) Siderite formation by mechanochemical and thermo pressure processes for CO2 capture using iron ore as initial sorbent. Procesess. https://doi.org/10.3390/pr7100735

    Article  Google Scholar 

  • Pannoccia G, Puccini M, Seggiani M, Vitolo S (2007) Experimental and modeling studies on high-temperature capture of CO2 using lithium zirconate based sorbents. Ind Eng Chem Res 46:6696–6706

    Article  Google Scholar 

  • Patterson J (1994) A review of the effects of minerals in processingof Auatralian oil shales. Fuel 73:321–327

    Article  CAS  Google Scholar 

  • Salvador C, Lu D, Anthony D, Abadanes J (2003) Enhancement of CaO for CO2 capture in an FBC environment. Chem Eng J 96:187–196

    Article  CAS  Google Scholar 

  • Song C, Liu V, Qi Y, Chen G (2019) Absorption-microalgae hybrid CO2 capture and biotransformation strategy—a review. Int J Greenhouse Gas Control 88:109–117

    Article  CAS  Google Scholar 

  • Stewart C, Hessami MA (2005) Study of methods of carbon dioxide capture and sequestration––the sustainability of a photosynthetic bioreactor approach. Energy Convers Manage 46:403–420

    Article  CAS  Google Scholar 

  • Toby B (2001) EXPGUI, a graphical interface for GSAS. J Appl Cryst 34:210–221

    Article  CAS  Google Scholar 

  • Xie V, Fu Q, Quiao G, Webley P (2019) Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. J Membr Sci 572:38–60

    Article  CAS  Google Scholar 

  • Yan H, Xu Z, Fan M, Bland A, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27

    Article  Google Scholar 

  • Yang Y, Xu X, Guo Y, Wood C (2020) Enhancing the CO2 capture efficiency of amines by microgel particles. Int J Greenhouse Gas Control 103:103172

    Article  CAS  Google Scholar 

  • Zakharov V, Adonyi Z (1986) Thermal decomposition kinetics of siderite. Thermochim Acta 102:101–107

    Article  CAS  Google Scholar 

  • Zaman M, Lee JH (2013) Carbon capture from stationary power generation sources: a review of the current status of the technologies. Korean J Chem 30:1497–1526

    Article  CAS  Google Scholar 

  • Zhang J, Webley P (2008) Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption. Environ Sci Technol 42:563–569

    Article  CAS  Google Scholar 

  • Zhang N, Pan Z, Zhang Z, Zhang W, Zhang L, Baena-Moreno F, Lichtfouse E (2010) CO2 capture from coalbed methane using membranes: a review. Environ Chem Lett 18:79–96

    Article  Google Scholar 

  • Zhou GT (2011) Synthesis of siderite microspheres and their transformation to magnetite microspheres. Eur J Mineral. https://doi.org/10.1127/0935-1221/2011/0023-2134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduin Yesid Mora Mendoza.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora Mendoza, E.Y., Sarmiento Santos, A., Vera López, E. et al. Siderite decomposition at room temperature conditions for CO2 capture applications. Braz. J. Chem. Eng. 38, 351–359 (2021). https://doi.org/10.1007/s43153-021-00097-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-021-00097-3

Keywords

Navigation