Skip to main content
Log in

Development of Electrodynamic Components for Microwave Electronic Devices Using the Technology of 3D Photopolymer Printing with Chemical Surface Metallization

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the possibility of using the technology of 3D photopolymer printing with subsequent metallization of working surfaces for developing electrodynamic components of microwave devices. The technology applicability is considered by examples of mockups of a profiled helical waveguide for a microwave undulator of a Compton free-electron laser and a periodic slow-wave system of a backward-wave oscillator with a ribbon electron beam. The results of “cold” measurements of the parameters of these electrodynamic systems are presented and good agreement with the simulation results is obtained, which confirms the prospects of using additive technologies for developing components of the vacuum microwave electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Liu, X.Gong, and W. J. Chappell, IEEE Trans. Microw. Theory Tech., 52, No. 11, 2567–2575 (2004). https://doi.org/10.1109/TMTT.2004.837165

  2. X. Shang, P.Penchev, C.Guo, et al., IEEE Trans. Microw. Theory Tech., 64, No. 8, 2572–2580 (2016). https://doi.org/10.1109/TMTT.2016.2574839

    Article  ADS  Google Scholar 

  3. J. Sence, W. Feuray, A.Perigaud, et al., Int. J. Microw. Wirel. Technol., 10, No. 7, 772–782 (2018). https://doi.org/10.1017/S1759078717001465

    Article  Google Scholar 

  4. S.Verploegh, M. Coffey, E.Grossman, and Z.Popovic, IEEE Trans. Microw. Theory Tech., 65, No. 12, 5144–5153 (2017). https://doi.org/10.1109/TMTT.2017.2771446

    Article  ADS  Google Scholar 

  5. S. V.Kuzikov, S.P. Antipov, A. Liu, et al., in: Proc. 38th Int. Free Electron Laser Conf. (FEL 2017), August 20–25, 2017, Santa Fe, USA, pp. 525–528. https://doi.org/10.18429/JACoW-FEL2017-WEP055

  6. A. R. Phipps, A. J.Maclachlan, L. Zhang, et al., in: Proc. 21st IEEE Int. Conf. on Pulsed Power (PPC 2017), June 18–22, 2017, Brighton, United Kingdom, pp. 1–4. https://doi.org/10.1109/PPC.2017.8291307

  7. E. I. Simakov, R. D. Gilbertson, M. J.Herman, et al., in: Proc. 9th Int. Particle Acceleration Conf. (IPAC 2018). April 29–May 4, 2018, Vancouver, Canada, pp. 4671–4674. https://doi.org/10.18429/JACoW-IPAC2018-THPML011

  8. M. D’Auria, W. J.Otter, J. Hazelle, et al., IEEE Trans. Comp. Pack. Manuf. Technol., 5, No. 9, 1339–1349 (2015). https://doi.org/10.1109/TCPMT.2015.2462130.

    Article  Google Scholar 

  9. K. Y.Chan, R.Ramer, and R. Sorrentino, IEEE Trans. Microw. Theory Techniq., 66, No. 9, 3993–4001 (2018). https://doi.org/10.1109/TMTT.2018.2851573

    Article  ADS  Google Scholar 

  10. D. I. Sobolev, M. D. Proyavin, N.Yu.Peskov, et al., EPJ Web Conf., 195, 01017 (2018). https://doi.org/10.1051/epjconf/201819501017

    Article  Google Scholar 

  11. P. Sigmund, Nucl. Instrum. Meth. Phys. Res. B, 27, No. 1, 1–20 (1987). https://doi.org/10.1016/0168-583X(87)90004-8

  12. I. E. Shpak, Electrolytes for Copper Plating [in Russian], ´Elektronika, Moscow (1989).

    Google Scholar 

  13. V. V. Sviridov, T.N.Vorob’eva, T.V.Gaevskaya, and L. I. Stepanova, Chemical Deposition of Metals from Aqueous Solutions [in Russian], Izd. Universitetskoe, Minsk (1987).

    Google Scholar 

  14. M. Dionigi, C.Tomassoni, G.Venanzoni, and R. Sorrentino, IEEE Microw. Wirel. Comp. Lett., 27, No. 11, 953–955 (2017). https://doi.org/10.1109/LMWC.2017.2750090

    Article  Google Scholar 

  15. https://www.3dsystems.com

  16. https://polymertal.com

  17. E.B.Abubakirov, A.A.Vikharev, N. S.Ginzburg, et al., Radiophys. Quantum Electron., 62, Nos. 7–8, 520–527 (2019). https://doi.org/10.1007/s11141-020-09998-8

    Article  ADS  Google Scholar 

  18. S. V.Kuzikov, A. V. Savilov, and A.A. Vikharev, Appl. Phys. Lett., 105, No. 3, 033504 (2014). https://doi.org/10.1063/1.4890586

    Article  ADS  Google Scholar 

  19. S.Tantawi, M. Shumail, J. Neilson, et al., Phys. Rev. Lett., 112, No. 16, 164802 (2014). https://doi.org/10.1103/PhysRevLett.112.164802

    Article  ADS  Google Scholar 

  20. S. V.Kuzikov and A. V. Savilov, Phys. Plasmas., 25, No. 11, 113114 (2018). https://doi.org/10.1063/1.5049880

    Article  ADS  Google Scholar 

  21. A. K. Kaminsky, S.N. Sedykh, I.V.Bandurkin, et al., Appl. Phys. Lett., 115, No. 16, 163501 (2019). https://doi.org/10.1063/1.5123409

    Article  ADS  Google Scholar 

  22. A. E. Fedotov, V. L. Bratman, P. B. Makhalov, and V. N. Manuilov, EPJ Web Conf., 195, No. 16, 01026 (2018). https://doi.org/10.1051/epjconf/201819501026

    Article  Google Scholar 

  23. D.E. Pershing, K.T.Nguyen, D.K. Abe, et al., IEEE Trans. Electron Dev., 61, No. 6, 1637–1642 (2014). https://doi.org/10.1109/TED.2014.2304473

    Article  ADS  Google Scholar 

  24. J.Pasour, E.Wright, K. T.Nguyen, et al., IEEE Trans. Electron Dev., 61, No. 6, 1630–1636 (2014). https://doi.org/10.1109/TED.2013.2295771

    Article  ADS  Google Scholar 

  25. Y. Shin, L. R.Barnett, and N.C. Luhmann, IEEE Trans. Electron Dev., 56, No. 5, 706–712 (2009). https://doi.org/10.1109/TED.2009.2015404

    Article  ADS  Google Scholar 

  26. A. G. Rozhnev, N. M. Ryskin, T. A.Karetnikova, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 542–553 (2014). https://doi.org/10.1007/s11141-014-9457-1

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Proyavin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 5–6, pp. 521–531, May–June 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proyavin, M.D., Vikharev, A.A., Fedotov, A. et al. Development of Electrodynamic Components for Microwave Electronic Devices Using the Technology of 3D Photopolymer Printing with Chemical Surface Metallization. Radiophys Quantum El 63, 469–478 (2020). https://doi.org/10.1007/s11141-021-10072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10072-0

Navigation