Skip to main content
Log in

The effect of ZnO nanoparticles as Ag-carrier in PBAT for antimicrobial films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) and ZnO-silver (ZnO-Ag) nanoparticles (NPs) are widely used in different fields, such as biomedicine and food packaging, due to their recognized antibacterial activity and safety for human health. In this paper, ZnO and ZnO-Ag NPs were incorporated into poly(butylene adipate-co-terephthalate) (PBAT), in two contents (0.5 and 1 wt%), to prepare antibacterial films. The NPs were characterized by TEM and FT-Raman, and the films were analyzed by FT-Raman and FTIR, mechanical properties, SEM–EDS, TGA, DSC, XRD, and antibacterial properties against Escherichia coli. The results indicate that both NPs were physically retained in the polymer structure, with a strong electrostatic interaction between the mixture components, reflecting excellent mechanical behavior. The films showed good thermal stability, without significant changes, and the nanocomposites enhanced PBAT crystallinity from 18 to 23% and 27% for PBAT-ZnO and PBAT-ZnO-Ag films, respectively. The mechanical, thermal, and crystallinity results indicated the excellent potential of NPs in biodegradable films to improve properties and expand applicability. The antimicrobial activity is higher for PBAT-ZnO-Ag films than the pristine PBAT due to the synergic effect between the NPs and the oxidation–reduction potential of each nanoparticle, where the ZnO protect and stabilized the Ag-NPs, acting as an Ag-carrier, enhancing its antimicrobial effects after the film’s preparation and allowing its applicability in biomedical products or food packaging.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Venkatesan R, Rajeswari N (2019) Preparation, mechanical and antimicrobial properties of SiO2 / poly(butylene adipate-co-terephthalate) films for active food packaging. SILICON 11:2233–2239. https://doi.org/10.1007/s12633-015-9402-8

    Article  CAS  Google Scholar 

  2. Venkatesan R, Rajeswari N (2017) ZnO/PBAT nanocomposite films: investigation on the mechanical and biological activity for food packaging. Polym Adv Technol 28:20–27. https://doi.org/10.1002/pat.3847

    Article  CAS  Google Scholar 

  3. Tavares LB, Ito NM, Salvadori MC, dos Santos DJ, Rosa DS (2018) PBAT/kraft lignin blend in flexible laminated food packaging: peeling resistance and thermal degradability. Polym Test 67:169–176. https://doi.org/10.1016/j.polymertesting.2018.03.004

    Article  CAS  Google Scholar 

  4. Cardoso LG, Pereira Santos JC, Camilloto GP, Miranda AL, Druzian JI, Guimarães AG (2017) Development of active films poly (butylene adipate co-terephthalate)–PBAT incorporated with oregano essential oil and application in fish fillet preservation. Ind Crops Prod 108:388–397. https://doi.org/10.1016/j.indcrop.2017.06.058

    Article  CAS  Google Scholar 

  5. Piedade AP, Pinho AC, Branco R, Morais PV (2020) Evaluation of antimicrobial activity of ZnO based nanocomposites for the coating of non-critical equipment in medical-care facilities. Appl Surf Sci 513:145818. https://doi.org/10.1016/j.apsusc.2020.145818

    Article  CAS  Google Scholar 

  6. Kaushik M, Niranjan R, Thangam R, Madhan B, Pandiyarasan V, Ramachandran C, Oh DH, Venkatasubbu GD (2019) Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl Surf Sci 479:1169–1177. https://doi.org/10.1016/j.apsusc.2019.02.189

    Article  CAS  Google Scholar 

  7. Lule ZC, Kim J (2021) Compatibilization effect of silanized SiC particles on polybutylene adipate terephthalate/polycarbonate blends. Mater Chem Phys 258:123879. https://doi.org/10.1016/j.matchemphys.2020.123879

    Article  CAS  Google Scholar 

  8. Dehghani S, Peighambardoust SH, Peighambardoust SJ, Hosseini SV, Regenstein JM (2019) Improved mechanical and antibacterial properties of active LDPE films prepared with combination of Ag, ZnO and CuO nanoparticles. Food Packag Shelf Life 22:100391. https://doi.org/10.1016/j.fpsl.2019.100391

    Article  Google Scholar 

  9. Gao Z, Van Nostrand JD, Zhou J, Zhong W, Chen K, Guo J (2019) Anti-listeria activities of linalool and its mechanism revealed by comparative transcriptome analysis. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02947

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li J, Ye F, Lei L, Zhao G (2018) Combined effects of octenylsuccination and oregano essential oil on sweet potato starch films with an emphasis on water resistance. Int J Biol Macromol 115:547–553. https://doi.org/10.1016/j.ijbiomac.2018.04.093

    Article  CAS  PubMed  Google Scholar 

  11. Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54:163–174. https://doi.org/10.1080/10408398.2011.578765

    Article  CAS  PubMed  Google Scholar 

  12. Kim I, Viswanathan K, Kasi G, Sadeghi K, Seo J (2020) ZnO Nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial. Food Rev Int 00:1–29. https://doi.org/10.1080/87559129.2020.1737709

    Article  Google Scholar 

  13. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  14. Emamifar A (2011) Applications of antimicrobial polymer nanocomposites in food packaging. In: Haschim A (ed) Advanced Nanocomposite Technology. IntechOpen, Croatia

    Google Scholar 

  15. Khalil HA, Bhat AH, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2011.08.078

    Article  PubMed  Google Scholar 

  16. Yu HY, Yao JM (2016) Reinforcing properties of bacterial polyester with different cellulose nanocrystals via modulating hydrogen bonds. Compos Sci Technol 136:53–60. https://doi.org/10.1016/j.compscitech.2016.10.004

    Article  CAS  Google Scholar 

  17. Kumar S, Mukherjee A, Dutta J (2020) Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2020.01.002

    Article  Google Scholar 

  18. Moustafa H, Youssef AM, Darwish NA, Abou-Kandil AI (2019) Eco-friendly polymer composites for green packaging: Future vision and challenges. Compos Part B Eng 172:16–25. https://doi.org/10.1016/j.compositesb.2019.05.048

    Article  CAS  Google Scholar 

  19. Kohsari I, Shariatinia Z, Pourmortazavi SM (2016) Antibacterial electrospun chitosan–polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2015.12.075

    Article  PubMed  Google Scholar 

  20. Grząbka-Zasadzińska A, Amietszajew T, Borysiak S (2017) Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids. J Therm Anal Calorim 130:143–154. https://doi.org/10.1007/s10973-017-6295-3

    Article  CAS  Google Scholar 

  21. Ahmed J, Mulla M, Jacob H, Luciano G, Bini TB, Almusallam A (2019) Polylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2019.100355

    Article  Google Scholar 

  22. Dhar P, Bhasney SM, Kumar A, Katiyar V (2016) Acid functionalized cellulose nanocrystals and its effect on mechanical, thermal, crystallization and surfaces properties of poly (lactic acid) bionanocomposites films: a comprehensive study. Polymer (Guildf) 101:75–92. https://doi.org/10.1016/j.polymer.2016.08.028

    Article  CAS  Google Scholar 

  23. Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842. https://doi.org/10.1016/j.carbpol.2010.10.047

    Article  CAS  Google Scholar 

  24. Olad A, Gharekhani H, Mirmohseni A, Bybordi A (2018) Superabsorbent nanocomposite based on maize bran with integration of water-retaining and slow-release NPK fertilizer. Adv Polym Technol 37:1682–1694. https://doi.org/10.1002/adv.21825

    Article  CAS  Google Scholar 

  25. Patil MD, Patil VD, Sapre AA, Ambone TS, Torris AT, Shukla PG, Shanmuganathan K (2018) Tuning controlled release behavior of starch granules using nanofibrillated cellulose derived from waste sugarcane bagasse. ACS Sustain Chem Eng 6:9208–9217. https://doi.org/10.1021/acssuschemeng.8b01545

    Article  CAS  Google Scholar 

  26. Pelissari FM, Andrade-Mahecha MM, do Amaral Sobral PJ, Menegalli FC (2017) Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2017.05.106

    Article  PubMed  Google Scholar 

  27. Peighambardoust SJ, Peighambardoust SH, Mohammadzadeh Pournasir N, Pakdel P (2019) Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2019.100420

    Article  Google Scholar 

  28. Ferreira FV, Mariano M, Lepesqueur LSS, Pinheiro IF, Santos LG, Burga-Sánchez J, Souza DHS, Koga-Ito CY, Teixeira-Neto AA, Mei LHI, Gouveia RF, Lona LMF (2019) Silver nanoparticles coated with dodecanethiol used as fillers in non-cytotoxic and antifungal PBAT surface based on nanocomposites. Mater Sci Eng C 98:800–807. https://doi.org/10.1016/j.msec.2019.01.044

    Article  CAS  Google Scholar 

  29. Luo S, Zhang P, Gao D (2020) Preparation and properties of antimicrobial poly(butylene adipate-co-terephthalate)/TiO2 nanocomposites films. J Macromol Sci Part B Phys 59:248–261. https://doi.org/10.1080/00222348.2020.1712045

    Article  CAS  Google Scholar 

  30. Gusatti M, Rosário JA, Barroso GS, Campos CEM, Riella HG, Kunhen NC (2009) Synthesis of ZnO nanostructures in low reaction temperature. Chem Eng Trans 17:1017–1022. https://doi.org/10.3303/CET0917170

    Article  Google Scholar 

  31. de Olyveira GM, Costa LM, de Carvalho AJ, Basmaji P, Pessan LA (2011) Novel LDPE/EVA nanocomposites with silver/titanium dioxide particles for biomedical applications. J Mater Sci Eng B 1(4B):516

    Google Scholar 

  32. Kyomuhimbo HD, Michira IN, Mwaura FB, Derese S, Feleni U, Iwuoha EI (2019) Silver–zinc oxide nanocomposite antiseptic from the extract of Bidens pilosa. SN Appl Sci 1:1–17. https://doi.org/10.1007/s42452-019-0722-y

    Article  CAS  Google Scholar 

  33. Zamiri R, Rebelo A, Zamiri G, Adnani A, Kuashal A, Belsley MS, Ferreira JMF (2014) Far-infrared optical constants of ZnO and ZnO/Ag nanostructures. RSC Adv 4:20902–20908. https://doi.org/10.1039/c4ra01563k

    Article  CAS  Google Scholar 

  34. Lefatshe K, Muiva CM, Kebaabetswe LP (2017) Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydr Polym 164:301–308. https://doi.org/10.1016/j.carbpol.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  35. Mosquera E, Rojas-Michea C, Morel M, Gracia F, Fuenzalida V, Zárate RA (2015) Zinc oxide nanoparticles with incorporated silver: Structural, morphological, optical and vibrational properties. Appl Surf Sci 347:561–568. https://doi.org/10.1016/j.apsusc.2015.04.148

    Article  CAS  Google Scholar 

  36. Mosquera E, Bernal J, Zarate RA, Mendoza F, Katiyar RS, Morell G (2013) Growth and electron field-emission of single-crystalline ZnO nanowires. Mater Lett 93:326–329. https://doi.org/10.1016/j.matlet.2012.11.119

    Article  CAS  Google Scholar 

  37. Wang LN, Hu LZ, Zhang HQ, Qiu Y, Lang Y, Liu GQ, Ji JY, Ma JX, Zhao ZW (2011) Studying the raman spectra of Ag doped ZnO films grown by PLD. Mater Sci Semicond Process 14:274–277. https://doi.org/10.1016/j.mssp.2011.05.004

    Article  CAS  Google Scholar 

  38. Rodrigues ADG, Galzerani JC (2012) Espectroscopia de IV, UV e raman. Rev Bras Ensino Física 34:4309

    Google Scholar 

  39. He X, Li P (2020) Surface water pollution in the middle chinese loess plateau with special focus on hexavalent chromium (Cr6+): occurrence, sources and health risks. Expo Heal. https://doi.org/10.1007/s12403-020-00344-x

    Article  Google Scholar 

  40. Hernández-López M, Correa-Pacheco ZN, Bautista-Baños S, Zavaleta-Avejar L, Benítez-Jiménez JJ, Sabino-Gutiérrez MA, Ortega-Gudiño P (2019) Bio-based composite fibers from pine essential oil and PLA/PBAT polymer blend morphological, physicochemical, thermal and mechanical characterization. Mater Chem Phys 234:345–353. https://doi.org/10.1016/j.matchemphys.2019.01.034

    Article  CAS  Google Scholar 

  41. Cai Y, Lv J, Feng J, Liu Y, Wang Z, Zhao M, Shi R (2012) Discrimination of poly(butylenes adipate-co-terephthalate) and poly(ethylene terephthalate) with fourier transform infrared microscope and raman spectroscope. Spectrosc Lett 45:280–284. https://doi.org/10.1080/00387010.2011.610420

    Article  CAS  Google Scholar 

  42. Cai Y, Lv J, Feng J (2013) Spectral characterization of four kinds of biodegradable plastics: poly (lactic acid), poly (butylenes adipate-co-terephthalate), poly (hydroxybutyrate-co-hydroxyvalerate) and poly (butylenes succinate) with FTIR and raman spectroscopy. J Polym Environ 21:108–114. https://doi.org/10.1007/s10924-012-0534-2

    Article  CAS  Google Scholar 

  43. Felipe Jaramillo A, Riquelme S, Montoya LF, Sánchez-Sanhueza G, Medinam C, Rojas D, Salazar F, Pablo Sanhueza J, Francisco Meléndrez M (2019) Influence of the concentration of copper nanoparticles on the thermo-mechanical and antibacterial properties of nanocomposites based on poly(butylene adipate-co-terephthalate). Polym Compos. https://doi.org/10.1002/pc.24949

    Article  Google Scholar 

  44. Biswas MC, Jeelani S, Rangari V (2017) Influence of biobased silica/carbon hybrid nanoparticles on thermal and mechanical properties of biodegradable polymer films. Compos Commun 4:43–53. https://doi.org/10.1016/j.coco.2017.04.005

    Article  Google Scholar 

  45. Barbosa RFS, Souza AG, Rosa DS (2020) Acetylated cellulose nanostructures as reinforcement materials for PBAT nanocomposites. Polym Compos. https://doi.org/10.1002/pc.25580

    Article  Google Scholar 

  46. Wahid F, Duan YX, Hu XH, Chu LQ, Jia SR, Cui JD, Zhong C (2019) A facile construction of bacterial cellulose/ZnO nanocomposite films and their photocatalytic and antibacterial properties. Int J Biol Macromol 132:692–700. https://doi.org/10.1016/j.ijbiomac.2019.03.240

    Article  CAS  PubMed  Google Scholar 

  47. Zhou K, Gui Z, Hu Y, Jiang S, Tang G (2016) The influence of cobalt oxide-graphene hybrids on thermal degradation, fire hazards and mechanical properties of thermoplastic polyurethane composites. Compos Part A Appl Sci Manuf 88:10–18. https://doi.org/10.1016/j.compositesa.2016.05.014

    Article  CAS  Google Scholar 

  48. Saboor A, Shah SM, Hussain H (2019) Band gap tuning and applications of ZnO nanorods in hybrid solar cell: Ag-doped verses Nd-doped ZnO nanorods. Mater Sci Semicond Process 93:215–225. https://doi.org/10.1016/j.mssp.2019.01.009

    Article  CAS  Google Scholar 

  49. Senthilkumar SR, Sivakumar T (2014) Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 6:461–465

    Google Scholar 

  50. Venu Gopal VR, Kamila S (2017) Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Appl Nanosci. https://doi.org/10.1007/s13204-017-0553-3

    Article  Google Scholar 

  51. Pascariu P, Cojocaru C, Samoila P, Airinei A, Olaru N, Rusu D, Rosca I, Suchea M (2020) Photocatalytic and antimicrobial activity of electrospun ZnO: Ag nanostructures. J Alloys Compd 834:155144. https://doi.org/10.1016/j.jallcom.2020.155144

    Article  CAS  Google Scholar 

  52. Marimuthu T, Anandhan N, Thangamuthu R (2018) Electrochemical synthesis of one-dimensional ZnO nanostructures on ZnO seed layer for DSSC applications. Appl Surf Sci 428:385–394. https://doi.org/10.1016/j.apsusc.2017.09.116

    Article  CAS  Google Scholar 

  53. Jung HJ, Koutavarapu R, Lee S, Kim JH, Choi HC, Choi MY (2018) Enhanced photocatalytic degradation of lindane using metal–semiconductor Zn@ZnO and ZnO/Ag nanostructures. J Environ Sci (China) 74:107–115. https://doi.org/10.1016/j.jes.2018.02.014

    Article  CAS  Google Scholar 

  54. Saadiah MA, Zhang D, Nagao Y, Muzakir SK, Samsudin AS (2019) Reducing crystallinity on thin film based CMC/PVA hybrid polymer for application as a host in polymer electrolytes. J Non Cryst Solids 511:201–211. https://doi.org/10.1016/j.jnoncrysol.2018.11.032

    Article  CAS  Google Scholar 

  55. Panthi G, Park SJ, Chung HJ, Park M, Kim HY (2017) Silver nanoparticles decorated Mn2O3 hybrid nanofibers via electrospinning: towards the development of new bactericides with synergistic effect. Mater Chem Phys 189:70–75. https://doi.org/10.1016/j.matchemphys.2016.12.026

    Article  CAS  Google Scholar 

  56. Seray M, Skender A, Hadj-Hamou AS (2020) Kinetics and mechanisms of Zn2+ release from antimicrobial food packaging based on poly (butylene adipate-co-terephthalate) and zinc oxide nanoparticles. Polym Bull. https://doi.org/10.1007/s00289-020-03145-z

    Article  Google Scholar 

  57. Gupta R, Das N, Singh M (2019) Fabrication and surface characterisation of c-ZnO loaded TTDMM dendrimer nanocomposites for biological applications. Appl Surf Sci 484:781–796. https://doi.org/10.1016/j.apsusc.2019.04.136

    Article  CAS  Google Scholar 

  58. Zhang J, Cao C, Zheng S, Li W, Li B, Xie X (2020) Poly (butylene adipate-co-terephthalate)/magnesium oxide/silver ternary composite biofilms for food packaging application. Food Packag Shelf Life 24:100487. https://doi.org/10.1016/j.fpsl.2020.100487

    Article  Google Scholar 

  59. Tri Handok C, Huda A, Gulo F (2019) Synthesis pathway and powerful antimicrobial properties of silver nanoparticle: a critical review. Asian J Sci Res. https://doi.org/10.3923/ajsr.2019.1.17.s

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support provided by FAPESP (2018/11277-7), CNPq, CAPES (Process No 88882.333460/2019-1), and the Multiuser Experimental Center of the Federal University of ABC (CEM-UFABC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derval S. Rosa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, A.G., Komatsu, L.G.H., Barbosa, R.F.S. et al. The effect of ZnO nanoparticles as Ag-carrier in PBAT for antimicrobial films. Polym. Bull. 79, 4031–4048 (2022). https://doi.org/10.1007/s00289-021-03681-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03681-2

Keywords

Navigation