Skip to main content
Log in

Dispositional Negative Emotionality in Childhood and Adolescence Predicts Structural Variation in the Amygdala and Caudal Anterior Cingulate During Early Adulthood: Theoretically and Empirically Based Tests

  • Published:
Research on Child and Adolescent Psychopathology Aims and scope Submit manuscript

Abstract

Substantial evidence implicates the amygdala and related structures in the processing of negative emotions. Furthermore, neuroimaging evidence suggests that variations in amygdala volumes are related to trait-like individual differences in neuroticism/negative emotionality, although many questions remain about the nature of such associations. We conducted planned tests of the directional prediction that dispositional negative emotionality measured at 10–17 years using parent and youth ratings on the Child and Adolescent Dispositions Scale (CADS) would predict larger volumes of the amygdala in adulthood and conducted exploratory tests of associations with other regions implicated in emotion processing. Participants were 433 twins strategically selected for neuroimaging during wave 2 from wave 1 of the Tennessee Twins Study (TTS) by oversampling on internalizing and/or externalizing psychopathology risk. Controlling for age, sex, race-ethnicity, handedness, scanner, and total brain volume, youth-rated negative emotionality positively predicted bilateral amygdala volumes after correction for multiple testing. Each unit difference of one standard deviation (SD) in negative emotionality was associated with a .12 SD unit difference in larger volumes of both amygdalae. Parent-rated negative emotionality predicted greater thickness of the left caudal/dorsal anterior cingulate cortex (β = 0.28). Associations of brain structure with negative emotionality were not moderated by sex. These results are striking because dispositions assessed at 10–17 years of age were predictive of grey matter volumes measured 12–13 years later in adulthood. Future longitudinal studies should examine the timing of amygdala/cingulate associations with dispositional negative emotionality to determine when these associations emerge during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achenbach, T. M., McConaughy, S. H., & Howell, C. T. (1987). Child and adolescent behavioral and emotional problems: Implications of cross-informant correlations for situational specificity. Psychological Bulletin, 101(2), 213–232. https://doi.org/10.1037/0033-2909.101.2.213

    Article  PubMed  Google Scholar 

  • Allen, T. A., & DeYoung, C. G. (2017). Personality neuroscience and the Five Factor Model. In T. A. Widiger (Ed.), Oxford handbook of the Five Factor Model (pp. 319–349). Oxford University Press.

    Google Scholar 

  • Asman, A. J., & Landman, B. A. (2011). Robust Statistical Label Fusion Through Consensus Level, Labeler Accuracy, and Truth Estimation (COLLATE). Ieee Transactions on Medical Imaging, 30(10), 1779–1794. https://doi.org/10.1109/tmi.2011.2147795

    Article  PubMed  PubMed Central  Google Scholar 

  • Asman, A. J., & Landman, B. A. (2012). Formulating Spatially Varying Performance in the Statistical Fusion Framework. Ieee Transactions on Medical Imaging, 31(6), 1326–1336. https://doi.org/10.1109/tmi.2012.2190992

    Article  PubMed  PubMed Central  Google Scholar 

  • Asman, A. J., & Landman, B. A. (2014). Hierarchical performance estimation in the statistical label fusion framework. Medical Image Analysis, 18(7), 1070–1081. https://doi.org/10.1016/j.media.2014.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Avants, B. B., Tustison, N., & Song, G. (2009). Advanced normalization tools (ANTS). Insight Journal, 2(365), 1–35.

    Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289–300.

    Google Scholar 

  • Blankstein, U., Chen, J. Y. W., Mincic, A. M., McGrath, P. A., & Davis, K. D. (2009). The complex minds of teenagers: Neuroanatomy of personality differs between sexes. Neuropsychologia, 47(2), 599–603. https://doi.org/10.1016/j.neuropsychologia.2008.10.014

    Article  PubMed  Google Scholar 

  • Caspi, A., Henry, B., McGee, R. O., Moffitt, T. E., & Silva, P. A. (1995). Temperamental origins of child and adolescent behavior problems: From age 3 to age 15. Child Development, 66(1), 55–68. https://doi.org/10.1111/j.1467-8624.1995.tb00855.x

    Article  PubMed  Google Scholar 

  • Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., & Moffitt, T. E. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2, 119–137.

    Article  Google Scholar 

  • Cha, J., Greenberg, T., Carlson, J. M., DeDora, D. J., Hajcak, G., & Mujica-Parodi, L. R. (2014). Circuit-wide structural and functional measures predict ventromedial prefrontal cortex rear generalization: Implications for generalized anxiety disorder. Journal of Neuroscience, 34(11), 4043–4053. https://doi.org/10.1523/jneurosci.3372-13.2014

    Article  PubMed  Google Scholar 

  • Class, Q. A., Rathouz, P. J., Van Hulle, C. A., Applegate, B., Waldman, I. D., Zald, D. H., & Lahey, B. B. (2019). Socioemotional dispositions of children and adolescents predict general and specific second-order factors of psychopathology in early adulthood across informants: A 12-year prospective study. Journal of Abnormal Psychology, 128, 574–584.

    Article  Google Scholar 

  • Delaparte, L., Bartlett, E., Grazioplene, R., Perlman, G., Gardus, J., DeLorenzo, C., Kotov, R. (2019). Structural correlates of the orbitofrontal cortex and amygdala and personality in female adolescents. Psychophysiology, e13376. https://doi.org/10.1111/psyp.13376

  • Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., & Hyman, B. T. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.

    Article  Google Scholar 

  • Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53, 1–15.

    Article  Google Scholar 

  • Dewey, J., Hana, G., Russell, T., Price, J., McCaffrey, D., Harezlak, J., & Navia, B. (2010). Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study. NeuroImage, 51(4), 1334–1344.

    Article  Google Scholar 

  • DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N., & Gray, J. R. (2010). Testing Predictions From Personality Neuroscience: Brain Structure and the Big Five. Psychological Science, 21(6), 820–828. https://doi.org/10.1177/0956797610370159

    Article  PubMed  Google Scholar 

  • DeYoung, C. G., & Krueger, R. F. (2018). A cybernetic theory of psychopathology. Psychological Inquiry, 29(3), 117–138.

    Article  Google Scholar 

  • Ducharme, S., Albaugh, M. D., Hudziak, J. J., Botteron, K. N., Nguyen, T. V., Truong, C., & Brain Dev Cooperative, G. (2014). Anxious/Depressed Symptoms are Linked to Right Ventromedial Prefrontal Cortical Thickness Maturation in Healthy Children and Young Adults. Cerebral Cortex, 24(11), 2941–2950. https://doi.org/10.1093/cercor/bht151.

    Article  PubMed  Google Scholar 

  • Etkin, A., Buchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews Neuroscience, 16(11), 693–700. https://doi.org/10.1038/nrn4044

  • Etkin, A., Buchel, C., & Gross, J. J. (2016). Emotion regulation involves both model-based and model-free processes. Nature Reviews Neuroscience, 17(8). https://doi.org/10.1038/nrn.2016.79

  • Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85–93. https://doi.org/10.1016/j.tics.2010.11.004

    Article  PubMed  Google Scholar 

  • Ferschmann, L., Fjell, A. M., Vollrath, M. E., Grydeland, H., Walhovd, K. B., & Tamnes, C. K. (2018). Personality Traits Are Associated With Cortical Development Across Adolescence: A Longitudinal Structural MRI Study. Child Development, 89(3), 811–822. https://doi.org/10.1111/cdev.13016

    Article  PubMed  Google Scholar 

  • Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774–781.

    Article  Google Scholar 

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., & Klaveness, S. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.

    Article  Google Scholar 

  • Gennatas, E. D., Avants, B. B., Wolf, D. H., Satterthwaite, T. D., Ruparel, K., Ciric, R., & Gur, R. C. (2017). Age-Related Effects and Sex Differences in Gray Matter Density, Volume, Mass, and Cortical Thickness from Childhood to Young Adulthood. Journal of Neuroscience, 37(20), 5065–5073. https://doi.org/10.1523/jneurosci.3550-16.2017

    Article  PubMed  Google Scholar 

  • Ghashghaei, H., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 34(3), 905–923. https://doi.org/10.1016/j.neuroimage.2006.09.046

    Article  PubMed  Google Scholar 

  • Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., & Rapoport, J. L. (1997). Sexual dimorphism of the developing human brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 1185–1201.

    Article  Google Scholar 

  • Gray, J. C., Owens, M. M., Hyatt, C. S., Miller, J. D. (2018). No evidence for morphometric associations of the amygdala and hippocampus with the five-factor model personality traits in relatively healthy young adults. PLoS One, 9 https://doi.org/10.1371/journal.pone.0204011

  • Gross, J. J. (2015). Emotion regulation: Current status and future prospects. Psychological Inquiry, 26(1), 1–26. https://doi.org/10.1080/1047840x.2014.940781

    Article  Google Scholar 

  • Gross, J. J., & Barrett, L. F. (2011). Emotion generation and emotion regulation: One or two depends on your point of view. Emotion Review, 3(1), 8–16. https://doi.org/10.1177/1754073910380974

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammen, C. (1991). Generation of stress in the course of unipolar depression. Journal of Abnormal Psychology, 100(4), 555–561. https://doi.org/10.1037//0021-843x.100.4.555

    Article  PubMed  Google Scholar 

  • Hammen, C. (2006). Stress generation in depression: Reflections on origins, research, and future directions. Journal of Clinical Psychology, 62(9), 1065–1082. https://doi.org/10.1002/jclp.20293

    Article  PubMed  Google Scholar 

  • Holmes, A. J., Lee, P. H., Hollinshead, M. O., Bakst, L., Roffman, J. L., Smoller, J. W., & Buckner, R. L. (2012). Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. Journal of Neuroscience, 32(50), 18087–18100. https://doi.org/10.1523/jneurosci.2531-12.2012

    Article  PubMed  Google Scholar 

  • Jansen, A. G., Mous, S. E., White, T., Posthuma, D., & Polderman, T. J. C. (2015). What Twin Studies Tell Us About the Heritability of Brain Development, Morphology, and Function: A Review. Neuropsychology Review, 25(1), 27–46. https://doi.org/10.1007/s11065-015-9278-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Krueger, R. F., & Markon, K. E. (2006). Understanding psychopathology: Melding behavior genetics, personality, and quantitative psychology to develop an empirically based model. Current Directions in Psychological Science, 15, 113–117.

    Article  Google Scholar 

  • Kuhn, S., Schubert, F., & Gallinat, J. (2011). Structural correlates of trait anxiety: Reduced thickness in medial orbitofrontal cortex accompanied by volume increase in nucleus accumbens. Journal of Affective Disorders, 134(1–3), 315–319. https://doi.org/10.1016/j.jad.2011.06.003

    Article  PubMed  Google Scholar 

  • Lahey, B. B. (2009). Public health significance of neuroticism. American Psychologist, 64, 241–256.

    Article  Google Scholar 

  • Lahey, B. B., Applegate, B., Chronis, A. M., Jones, H. A., Williams, S. H., Loney, J., & Waldman, I. D. (2008a). Psychometric characteristics of a measure of emotional dispositions developed to test a developmental propensity model of conduct disorder. Journal of Clinical Child and Adolescent Psychology, 37, 794–807.

    Article  Google Scholar 

  • Lahey, B. B., Class, Q. A., Zald, D. H., Rathouz, P. J., Applegate, B., & Waldman, I. D. (2018). Prospective test of the developmental propensity model of antisocial behavior: from childhood and adolescence into early adulthood. Journal of Child Psychology and Psychiatry, 59, 676–683.

    Article  Google Scholar 

  • Lahey, B. B., Krueger, R. F., Rathouz, P. J., Waldman, I. D., & Zald, D. H. (2017). A hierarchical causal taxonomy of psychopathology across the life span. Psychological Bulletin, 143, 142–186.

    Article  Google Scholar 

  • Lahey, B. B., Rathouz, P. J., Applegate, B., Tackett, J. L., & Waldman, I. D. (2010). Psychometrics of a self-report version of the child and adolescent dispositions scale. Journal of Clinical Child and Adolescent Psychology, 39, 351–361.

    Article  Google Scholar 

  • Lahey, B. B., Rathouz, P. J., Applegate, B., Van Hulle, C., Garriock, H. A., Urbano, R. C., & Waldman, I. D. (2008b). Testing structural models of DSM-IV symptoms of common forms of child and adolescent psychopathology. Journal of Abnormal Child Psychology, 36, 187–206.

    Article  Google Scholar 

  • Lewis, G. J., Panizzon, M. S., Eyler, L., Fennema-Notestine, C., Chen, C. H., Neale, M. C., & Franz, C. E. (2014). Heritable influences on amygdala and orbitofrontal cortex contribute to genetic variation in core dimensions of personality. NeuroImage, 103, 309–315. https://doi.org/10.1016/j.neuroimage.2014.09.043

    Article  PubMed  Google Scholar 

  • Makris, N., Gasic, G. P., Seidman, L. J., Goldstein, J. M., Gastfriend, D. R., Elman, I., & Breiter, H. C. (2004). Decreased absolute amygdala volume in cocaine addicts. Neuron, 44(4), 729–740. https://doi.org/10.1016/j.neuron.2004.10.027

    Article  PubMed  Google Scholar 

  • Marwha, D., Halari, M., & Eliot, L. (2017). Meta-analysis reveals a lack of sexual dimorphism in human amygdala volume. NeuroImage, 147, 282–294. https://doi.org/10.1016/j.neuroimage.2016.12.021

    Article  PubMed  Google Scholar 

  • Menary, K., Collins, P. F., Porter, J. N., Muetzel, R., Olson, E. A., Kumar, V., & Luciana, M. (2013). Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelligence, 41(5), 597–606. https://doi.org/10.1016/j.intell.2013.07.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Mincic, A. M. (2015). Neuroanatomical correlates of negative emotionality-related traits: A systematic review and meta-analysis. Neuropsychologia, 77, 97–118. https://doi.org/10.1016/j.neuropsychologia.2015.08.007

    Article  PubMed  Google Scholar 

  • Modat, M., Ridgway, G. R., Taylor, Z. A., Lehmann, M., Barnes, J., Hawkes, D. J., & Ourselin, S. (2010). Fast free-form deformation using graphics processing units. Computer Methods and Programs in Biomedicine, 98(3), 278–284. https://doi.org/10.1016/j.cmpb.2009.09.002

    Article  PubMed  Google Scholar 

  • Morey, R. A., Petty, C. M., Xu, Y., Hayes, J. P., Wagner, H. R., II., Lewis, D. V., & McCarthy, G. (2009). A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. NeuroImage, 45(3), 855–866.

    Article  Google Scholar 

  • Muris, P., & Ollendick, T. H. (2005). The role of temperament in the etiology of child psychopathology. Clinical Child and Family Psychology Review, 8(4), 271–289. https://doi.org/10.1007/s10567-005-8809-y

    Article  PubMed  Google Scholar 

  • Nigg, J. T. (2006). Temperament and developmental psychopathology. Journal of Child Psychology and Psychiatry, 47, 395–422.

    Article  Google Scholar 

  • Opel, N., Amare, A.T., Redlich, R., Repple, J., Kaehler, C.,, Grotegerd, D., Dohm, K., Zaremba, D., Leehr, E.J., Böhnlein, J., Förster, K., Bürger, C., Meinert, S., Enneking, V., Emden, D., Leenings, R., Winter, N., Hahn, T., Heindel, W., Bauer, J., Wilhelms, D., Schmitt, S., Jansen, A., Krug, A., Nenadic, I., Rietschel, M., Witt, S., Forstner, A.J., Nöthen, M.M., Kircher, T., Arolt, V., Baune, B.T., & Dannlowski, D. (2020). Cortical surface area alterations shaped by genetic load for neuroticism. Molecular Psychiatry, 25(12), 3422–3431. https://doi.org/10.1038/s41380-018-0236-9

  • Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M., & Kremen, W. S. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19(11), 2728–2735. https://doi.org/10.1093/cercor/bhp026

    Article  PubMed  PubMed Central  Google Scholar 

  • Panksepp, J. (2004). Affective neuroscience: The foundations of human and animal emotions. Oxford University Press.

    Google Scholar 

  • Perlaki, G., Horvath, R., Nagy, S. A., Bogner, P., Doczi, T., Janszky, J., & Orsi, G. (2017). Comparison of accuracy between FSL’s FIRST and Freesurfer for caudate nucleus and putamen segmentation. Scientific reports, 7(1), 2418.

    Article  Google Scholar 

  • Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48(2), 175–187. https://doi.org/10.1016/j.neuron.2005.09.025

    Article  PubMed  Google Scholar 

  • Phillips, M., Ladouceur, C., & Drevets, W. (2008). A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9), 833–857. https://doi.org/10.1038/mp.2008.65

    Article  Google Scholar 

  • Plassard, A. J., & Landman, B. A. (2017). Multiprotocol, multiatlas statistical fusion: theory and application. Journal of Medical Imaging, 4(3). https://doi.org/10.1117/1.jmi.4.3.034002

  • Pujol, J., Lopez, A., Deus, J., Cardoner, N., Vallejo, J., Capdevila, A., & Paus, T. (2002). Anatomical variability of the anterior cingulate gyrus and basic dimensions of human personality. NeuroImage, 15(4), 847–855. https://doi.org/10.1006/nimg.2001.1004

    Article  PubMed  Google Scholar 

  • Ray, R. D., & Zald, D. H. (2012). Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neuroscience and Biobehavioral Reviews, 26, 479–501.

    Article  Google Scholar 

  • Reardon, P. K., Seidlitz, J., Vandekar, S., Liu, S. Y., Patel, R., Park, M. T. M., & Raznahan, A. (2018). Normative brain size variation and brain shape diversity in humans. Science, 360(6394), 1222–1226. https://doi.org/10.1126/science.aar2578

    Article  PubMed  PubMed Central  Google Scholar 

  • Rive, M. M., van Rooijen, G., Veltman, D. J., Phillips, M. L., Schene, A. H., & Ruhe, H. G. (2013). Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(10), 2529–2553. https://doi.org/10.1016/j.neubiorev.2013.07.018

  • Rothbart, M. K., S Ahadi, S. A., & Evans, D. E. (2000). Temperament and personality: Origins and outcomes. Journal of Personality and Social Psychology, 78, 122–35.

  • Salm, A. K., Pavelko, M., Krouse, E. M., Webster, W., Kraszpulski, M., & Birkle, D. L. (2004). Lateral amygdaloid nucleus expansion in adult rats is associated with exposure to prenatal stress. Developmental Brain Research, 148(2), 159–167. https://doi.org/10.1016/j.devbrainres.2003.11.005

    Article  PubMed  Google Scholar 

  • Schoemaker, D., Buss, C., Head, K., Sandman, C. A., Davis, E. P., Chakravarty, M. M., & Pruessner, J. C. (2016). Hippocampus and amygdala volumes from magnetic resonance images in children: Assessing accuracy of FreeSurfer and FSL against manual segmentation. NeuroImage, 129, 1–14.

    Article  Google Scholar 

  • Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356. https://doi.org/10.1523/jneurosci.5587-06.2007

    Article  PubMed  Google Scholar 

  • Servaas, M. N., van der Velde, J., Costafreda, S. G., Horton, P., Ormel, J., Riese, H., & Aleman, A. (2013). Neuroticism and the brain: A quantitative meta-analysis of neuroimaging studies investigating emotion processing. Neuroscience and Biobehavioral Reviews, 37(8), 1518–1529. https://doi.org/10.1016/j.neubiorev.2013.05.005

    Article  PubMed  Google Scholar 

  • Shackman, A. J., Tromp, D. P. M., Stockbridge, M. D., Kaplan, C. M., Tillman, R. M., & Fox, A. S. (2016). Dispositional negativity: An integrative psychological and neurobiological perspective. Psychological Bulletin, 142(12), 1275–1314. https://doi.org/10.1037/bul0000073

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw, D. S., Hyde, L. W., & Brennan, L. M. (2012). Early predictors of boys’ antisocial trajectories. Development and Psychopathology, 24(3), 871–888. https://doi.org/10.1017/s0954579412000429

    Article  PubMed  PubMed Central  Google Scholar 

  • Sitnick, S. L., Brennan, L. M., Forbes, E., & Shaw, D. S. (2014). Developmental pathways to sexual risk behavior in high-risk adolescent boys. Pediatrics, 133(6), 1038–1045. https://doi.org/10.1542/peds.2013-3976

    Article  PubMed  PubMed Central  Google Scholar 

  • Spampinato, M. V., Wood, J. N., De Simone, V., & Grafman, J. (2009). Neural Correlates of Anxiety in Healthy Volunteers: A Voxel-Based Morphometry Study. Journal of Neuropsychiatry and Clinical Neurosciences, 21(2), 199–205.

    Article  Google Scholar 

  • Swagerman, S. C., Brouwer, R. M., de Geus, E. J. C., Pol, H. E. H., & Boomsma, D. I. (2014). Development and heritability of subcortical brain volumes at ages 9 and 12. Genes Brain and Behavior, 13(8), 733–742. https://doi.org/10.1111/gbb.12182

    Article  Google Scholar 

  • Sweeney, M., Tsapanou, A., & Stern, Y. (2019). Regional cortical thickness and neuroticism across the lifespan. Psychiatry Research-Neuroimaging, 286, 39–44. https://doi.org/10.1016/j.pscychresns.2019.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Tackett, J. L. (2011). Parent Informants for Child Personality: Agreement, Discrepancies, and Clinical Utility. Journal of Personality Assessment, 93(6), 539–544. https://doi.org/10.1080/00223891.2011.608763

    Article  PubMed  Google Scholar 

  • Tackett, J. L., Waldman, I. D., Van Hulle, C. A., & Lahey, B. B. (2011). Shared genetic influences on negative emotionality and major depression/conduct disorder comorbidity. Journal of the American Academy of Child and Adolescent Psychiatry, 50, 818–827.

    Article  Google Scholar 

  • Taylor, J., Allan, N., Mikolajewski, A. J., & Hart, S. A. (2013). Common genetic and nonshared environmental factors contribute to the association between socioemotional dispositions and the externalizing factor in children. Journal of Child Psychology and Psychiatry, 54, 67–76.

    Article  Google Scholar 

  • Thomas, A., & Chess, S. (1957). An approach to the study of sources of individual differences in child behavior. Journal of clinical and experimental psychopathology, 18, 347–357.

    PubMed  Google Scholar 

  • Trentacosta, C. J., Hyde, L. W., Shaw, D. S., & Cheong, J. W. (2009). Adolescent dispositions for antisocial behavior in context: The roles of neighborhood dangerousness and parental knowledge. Journal of Abnormal Psychology, 118, 564–575. https://doi.org/10.1037/a0016394

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsang, O., Gholipour, A., Kehtarnavaz, N., Gopinath, K., Briggs, R., & Panahi, I. (2008). Comparison of tissue segmentation algorithms in neuroimage analysis software tools. Paper presented at the Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE.

  • van der Plas, E. A. A., Boes, A. D., Wemmie, J. A., Tranel, D., & Nopoulos, P. (2010). Amygdala volume correlates positively with fearfulness in normal healthy girls. Social Cognitive and Affective Neuroscience, 5(4), 424–431. https://doi.org/10.1093/scan/nsq009

    Article  PubMed  PubMed Central  Google Scholar 

  • Waldman, I. D., Tackett, J. L., Van Hulle, C. A., Applegate, B., Pardini, D., Frick, P. J., & Lahey, B. B. (2011). Child and adolescent conduct disorder substantially shares genetic influences with three socioemotional dispositions. Journal of Abnormal Psychology, 120, 57–70. https://doi.org/10.1037/a0021351

    Article  PubMed  Google Scholar 

  • Widiger, T. A., & Oltmanns, J. R. (2017). Neuroticism is a fundamental domain of personality with enormous public health implications. World Psychiatry, 16(2), 144–145. https://doi.org/10.1002/wps.20411

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright, C. I., Williams, D., Feczko, E., Barrett, L. F., Dickerson, B. C., Schwartz, C. E., & Wedig, M. M. (2006). Neuroanatomical correlates of extraversion and neuroticism. Cerebral Cortex, 16, 1809–1819.

  • Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., & Glahn, D. C. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53, 1135–1146.

    Article  Google Scholar 

  • Zald, D. H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Research Reviews, 41(1), 88–123. https://doi.org/10.1016/s0165-0173(02)00248-5

    Article  PubMed  Google Scholar 

  • Zald, D. H., & Kim, S. W. (1996). Anatomy and function of the orbital frontal cortex, II: Function and relevance to obsessive-compulsive disorder. Journal of Neuropsychiatry and Clinical Neurosciences, 8, 249–261.

    Article  Google Scholar 

  • Zhang, J. Y., Liu, T. H., He, Y., Pan, H. Q., Zhang, W. H., Yin, X. P., Pan, B. X. (2019). Chronic stress remodels synapses in an amygdala circuit-specific manner. Biological Psychiatry, 85(3), 189–201. https://doi.org/10.1016/j.biopsych.2018.06.019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin B. Lahey.

Ethics declarations

Informed Consent

Participants gave in-person written informed consent using a form approved by the Vanderbilt University, University of Wisconsin Madison, and University of Chicago Institutional Review Boards.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahey, B.B., Hinton, K.E., Burgess, L. et al. Dispositional Negative Emotionality in Childhood and Adolescence Predicts Structural Variation in the Amygdala and Caudal Anterior Cingulate During Early Adulthood: Theoretically and Empirically Based Tests. Res Child Adolesc Psychopathol 49, 1275–1288 (2021). https://doi.org/10.1007/s10802-021-00811-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10802-021-00811-2

Keywords

Navigation