Skip to main content
Log in

Porosity Evaluation of Additively Manufactured Components Using Deep Learning-based Ultrasonic Nondestructive Testing

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This study proposed deep learning-based ultrasonic nondestructive testing for porosity evaluation of additively manufactured components. First, porosity mechanisms according to additive manufacturing (AM) processing conditions were studied using traditional scanning acoustic microscopy and optical microscopy. Second, correlations between ultrasonic properties and porosity content were analyzed. The correlation results showed that the increased porosity content resulted in a decreased ultrasonic velocity and increased ultrasonic attenuation coefficient. Third, various levels of porosities were evaluated using a deep learning model based on a fully connected deep neural network that was trained on raw ultrasonic signals measured in the AM samples. After training, the testing performance of the trained model was evaluated. Additionally, the generalization performance of the pre-trained model was assessed using newly fabricated AM samples that were not used for training. The results showed that the porosity content evaluated by the pre-trained model matched well with that measured via traditional scanning acoustic microscopy, thus demonstrating the feasibility of deep learning-based ultrasonic nondestructive testing for porosity evaluation of additively manufactured components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Koester, L. W., Taheri, H., Bigelow, T. A., Collins, P. C., & Bonds, L. J. (2018). Nondestructive testing for metal parts fabricated using powder-based additive manufacturing. Materials Evaluation, 76(4), 514–524.

    Google Scholar 

  2. Ahn, D.-G. (2016). Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 381–395.

    Article  Google Scholar 

  3. Lee, H., Lim, C. H. J., Low, M. J., Tham, N., Murukeshan, V. M., & Kim, Y.-J. (2017). Lasers in additive manufacturing: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 307–322.

    Article  Google Scholar 

  4. Chua, Z. Y., Ahn, I. H., & Moon, S. K. (2017). Process monitoring and inspection systems in metal additive manufacturing: Status and applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 235–245.

    Article  Google Scholar 

  5. Ng, G. K. L., Jarfors, A. E. W., Bi, G., & Zheng, H. Y. (2009). Porosity formation and gas bubble retention in laser metal deposition. Applied Physics a-Materials Science & Processing, 97(3), 641–649.

    Article  Google Scholar 

  6. Eren, E., Kurama, S., & Solodov, I. (2012). Characterization of porosity and defect imaging in ceramic tile using ultrasonic inspections. Ceramics International, 38(3), 2145–2151.

    Article  Google Scholar 

  7. Vergara, L., Miralles, R., Gosalbez, J., Juanes, F. J., Ullate, L. G., Anaya, J. J., et al. (2001). NDE ultrasonic methods to characterise the porosity of mortar. Ndt & E International, 34(8), 557–562.

    Article  Google Scholar 

  8. Hernandez, M. G., Izquierdo, M. A. G., Ibanez, A., Anaya, J. J., & Ullate, L. G. (2000). Porosity estimation of concrete by ultrasonic NDE. Ultrasonics, 38(1–8), 531–533.

    Article  Google Scholar 

  9. Li, W., Chen, B., Qing, X., & Cho, Y. (2019). Characterization of microstructural evolution by ultrasonic nonlinear parameters adjusted by attenuation factor. Metals, 9(3), 271.

    Article  Google Scholar 

  10. Karthik, N. V., Gu, H., Pal, D., Starr, T., & Stucker, B. (2013). High frequency ultrasonic non destructive evaluation of additively manufactured components. In 24th International Solid Freeform Fabrication Symposium, 311–325.

  11. Jeong, H. (1997). Effects of voids on the mechanical strength and ultrasonic attenuation of laminated composites. Journal of Composite Materials, 31(3), 276–292.

    Article  Google Scholar 

  12. Kim, H. S., & Bush, M. B. (1999). The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostructured Materials, 11(3), 361–367.

    Article  Google Scholar 

  13. Turner, C. H., & Cowin, S. C. (1987). Dependence of elastic-constants of an anisotropic porous material upon porosity and fabric. Journal of Materials Science, 22(9), 3178–3184.

    Article  Google Scholar 

  14. Slotwinski, J. A., Garboczi, E. J., & Hebenstreit, K. M. (2014). Porosity measurements and analysis for metal additive manufacturing process control. Journal of Research of the National Institute of Standards and Technology, 119, 494–528.

    Article  Google Scholar 

  15. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  16. Nguyen, T. P., Choi, S., Park, S.-J., Park, S. H., & Yoon, J. (2020). Inspecting Method for Defective Casting Products with Convolutional Neural Network (CNN). International Journal of Precision Engineering and Manufacturing-Green Technology, 1–12.

  17. Sambath, S., Nagaraj, P., Selvakumar, N., Arunachalam, S., & Page, T. (2010). Automatic detection of defects in ultrasonic testing using artificial neural network. International Journal of Microstructure and Materials Properties, 5(6), 561–574.

    Article  Google Scholar 

  18. Trtnik, G., Kavcic, F., & Turk, G. (2009). Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics, 49(1), 53–60.

    Article  Google Scholar 

  19. Harley, J. B., & Sparkman, D. (2019). Machine learning and NDE: Past, present, and future. AIP Conference Proceedings, 2102(1), 090001.

    Article  Google Scholar 

  20. Ravanbod, H., & Jalali, A. (2008). Configurable ultrasonic flaw classification of oil pipelines. Nondestructive Testing and Evaluation, 23(1), 43–55.

    Article  Google Scholar 

  21. Hou, W., Wei, Y., Guo, J., Jin, Y., & Zhu, C. A. (2018). Automatic detection of welding defects using deep neural network. Journal of Physics: Conference Series, 933(1), 012006.

    Google Scholar 

  22. Meng, M., Chua, Y. J., Wouterson, E., & Ong, C. P. K. (2017). Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks. Neurocomputing, 257, 128–135.

    Article  Google Scholar 

  23. Margrave, F. W., Rigas, K., Bradley, D. A., & Barrowcliffe, P. (1999). The use of neural networks in ultrasonic flaw detection. Measurement, 25(2), 143–154.

    Article  Google Scholar 

  24. Yuan, S. F., Wang, L., & Peng, G. (2005). Neural network method based on a new damage signature for structural health monitoring. Thin-Walled Structures, 43(4), 553–563.

    Article  Google Scholar 

  25. Fahad, M., Kamal, K., Zafar, T., Qayyum, R., Tariq, S., & Khan, K (2017). Corrosion detection in industrial pipes using guided acoustics and radial basis function neural network. In International Conference on Robotics and Automation Sciences (ICRAS), IEEE, 129–133.

  26. Wang, Y., Shi, F., & Tong, X (2019). A Welding Defect Identification Approach in X-ray Images Based on Deep Convolutional Neural Networks. In International Conference on Intelligent Computing, springer(Cham), 53–64.

  27. Isamail, L., Maskuri, N. L., Isip, N. J., Lokman, S. F., & Bakar, M. H. A. (2019). Deep Neural Network Modeling for Metallic Component Defects Using the Finite Element Model. In Progress in Engineering Technology, springer, 259–270.

  28. Gong, H., Rafi, K., Gu, H., Starr, T., & Stucker, B. (2014). Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing, 1, 87–98.

    Article  Google Scholar 

  29. Peng, T., & Chen, C. (2018). Influence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser melting. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 55–62.

    Article  Google Scholar 

  30. Jhang, K.-Y., Choi, S., & Kim, J. (2020). Measurement of Nonlinear Ultrasonic Parameters from Higher Harmonics. In Measurement of Nonlinear Ultrasonic Characteristics..

  31. Kim, J., Song, D.-G., & Jhang, K.-Y. (2017). Absolute measurement and relative measurement of ultrasonic nonlinear parameters. Research in Nondestructive Evaluation, 28(4), 211–225.

    Article  Google Scholar 

  32. Park, S.-H., Kim, J., & Jhang, K.-Y. (2017). Relative measurement of the acoustic nonlinearity parameter using laser detection of an ultrasonic wave. International Journal of Precision Engineering and Manufacturing, 18(10), 1347–1352.

    Article  Google Scholar 

  33. Park, S.-H., Kim, J., & Jhang, K.-Y. (2017). Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method. Journal of the Korean Society for Nondestructive Testing, 37(1), 7–12.

    Article  Google Scholar 

  34. Jeong, H., & Hsu, D. K. (1995). Experimental-analysis of porosity-induced ultrasonic-attenuation and velocity change in carbon composites. Ultrasonics, 33(3), 195–203.

    Article  Google Scholar 

  35. Ziółkowski, G., Chlebus, E., Szymczyk, P., & Kurzac, J. (2014). Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology. Archives of Civil and Mechanical Engineering, 14(4), 608–614.

    Article  Google Scholar 

  36. Kasperovich, G., Haubrich, J., Gussone, J., & Requena, G. (2016). Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Materials & Design, 105, 160–170.

    Article  Google Scholar 

  37. Cunningham, R., Narra, S. P., Montgomery, C., Beuth, J., & Rollett, A. (2017). Synchrotron-based X-ray microtomography characterization of the effect of processing variables on porosity formation in laser power-bed additive manufacturing of Ti-6Al-4V. JOM Journal of the Minerals Metals and Materials Society, 69(3), 479–484.

    Article  Google Scholar 

  38. Guo, C., Ge, W., & Lin, F. (2015). Effects of scanning parameters on material deposition during Electron Beam Selective Melting of Ti-6Al-4V powder. Journal of Materials Processing Technology, 217, 148–157.

    Article  Google Scholar 

  39. Phani, K. K., & Niyogi, S. (1987). Elastic modulus-porosity relation in polycrystalline rare-earth oxides. Journal of the American Ceramic Society, 70(12), 362–366.

    Article  Google Scholar 

  40. Zhu, K., Li, C. F., Zhu, Z. G., & Liu, C. S. (2007). Measurement of the dynamic Young’s modulus of porous titanium and Ti6Al4V. Journal of Materials Science, 42(17), 7348–7353. https://doi.org/10.1007/s10853-007-1532-y.

    Article  Google Scholar 

  41. Hirsekorn, S., Van Andel, P., & Netzelmann, U. (1998). Ultrasonic methods to detect and evaluate damage in steel. Nondestructive Testing and Evaluation, 15(6), 373–393.

    Article  Google Scholar 

  42. Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9), 1423–1447.

    Article  Google Scholar 

  43. Aldrin, J. C., & Forsyth, D. S. (2019). Demonstration of using signal feature extraction and deep learning neural networks with ultrasonic data for detecting challenging discontinuities in composite panels. In AIP Conference Proceedings.

  44. Tokui, S., Oono, K., Hido, S., & Clayton, J. (2015). Chainer: a next-generation open source framework for deep learning. In Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual conference on neural information processing systems (NIPS), 5, 1–6.

  45. Javidrad, H., & Salemi, S. (2020). Determination of elastic constants of additive manufactured Inconel 625 specimens using an ultrasonic technique. International Journal of Advanced Manufacturing Technology, 107(11–12), 4597–4607.

    Article  Google Scholar 

  46. Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2016). On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv, 1609(04836).

  47. Zech, J. R., Badgeley, M. A., Liu, M., Costa, A. B., Titano, J. J., & Oermann, E. K. (2018). Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. Plos Medicine, 15(11).

Download references

Acknowledgements

This work was supported by a Korea Institute of Machinery & Materials grant funded by the Korea government (MSIT) (NK230l), and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20181510102360).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sungho Choi or Kyung-Young Jhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SH., Choi, S. & Jhang, KY. Porosity Evaluation of Additively Manufactured Components Using Deep Learning-based Ultrasonic Nondestructive Testing. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 395–407 (2022). https://doi.org/10.1007/s40684-021-00319-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00319-6

Keywords

Navigation