Skip to main content
Log in

Optimizing the Performance of High-Speed Machining on 15CDV6 HSLA Steel in Terms of Green Manufacturing Using Response Surface Methodology and Artificial Neural Network

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The execution of sustainable manufacturing methods to make machining processes more eco-friendly is a difficult task that has attracted significant attention from the industrial area for a long time. As one of the leading manufacturing processes, machining can have a profound impact on the environment, society, and financial aspects. In a specific scenario, recognizing reasonable machining conditions to supply cutting fluids utilizing eco-friendly methods is at present a significant focal point of academic and industrial sector research. This study is to investigate the optimal operational parameters such as speed, feed rate, and cutting depth during high-speed machining of 15CDV6 HSLA steel under near-dry (green machining) and flood lubrication using response surface methodology and an artificial neural network that leads to better performance measures like tool-chip interface temperature, specific energy, yield strength, and percentage elongation. Initially, tensile samples were prepared on wire EDM, further high-speed machining has been carried out on CNC milling using a mechanical carbide cutter to improve performance. The results showed that an improvement in tool-chip interface temperature (0.9–12%), specific energy (0.8–12%), yield strength (1.8–3.2%), and percentage elongation (1.0–8.9%) using green machining has been witnessed and confirmed that green machining is an alternative of the flood to enhance the strength while reducing the specific energy in addition to eco-friendly. Moreover, the comparative analysis between RSM and ANN results determined that the ANN delivers more precise results and confirms its adequacy when its correlation coefficients are large, and root mean square errors are small compared to those obtained through the RSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al-Ghamdi, K. A., & Iqbal, A. (2015). A sustainability comparison between conventional and high-speed machining. Journal of Cleaner Production, 108, 192–206. https://doi.org/10.1016/j.jclepro.2015.05.132.

    Article  Google Scholar 

  2. Singh, T., Singh, P., Dureja, J. S., Dogra, M., Singh, H., & Bhatti, M. S. (2016). A review of near dry machining/minimum quantity lubrication machining of difficult to machine alloys. International journal of Machining and Machinability of Materials, 18(3), 213–251. https://doi.org/10.1504/IJMMM.2016.076276.

    Article  Google Scholar 

  3. Goindi, G. S., & Sarkar, P. (2017). Dry machining: A step towards sustainable machining–challenges and future directions. Journal of cleaner production, 165, 1557–1571. https://doi.org/10.1016/j.jclepro.2017.07.235.

    Article  Google Scholar 

  4. Gupta, M. K., & Sood, P. K. (2017). Machining comparison of aerospace materials considering minimum quantity cutting fluid: A clean and green approach. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(8), 1445–1464. https://doi.org/10.1177/0954406216684158.

    Article  Google Scholar 

  5. Kumar, P. N., Bhaskar, Y., Mastanaiah, P., & Murthy, C. V. S. (2014). Study on dissimilar metals welding of 15CDV6 and SAE 4130 steels by inter pulse gas tungsten arc welding. Procedia Materials Science, 5, 2382–2391. https://doi.org/10.1016/j.mspro.2014.07.483.

    Article  Google Scholar 

  6. Srinivasan, L., Jakka, S. J., & Sathiya, P. (2017). Microstructure and mechanical properties of Gas tungsten arc welded high strength low alloy (15CDV6) steel joints. Materials Today: Proceedings, 4(8), 8874–8882. https://doi.org/10.1016/j.matpr.2017.07.238.

    Article  Google Scholar 

  7. Tahir, W., Jahanzaib, M., Ahmad, W., & Hussain, S. (2019). Surface morphology evaluation of hardened HSLA steel using cryogenic-treated brass wire in WEDM process. The International Journal of Advanced Manufacturing Technology, 104(9–12), 4445–4455. https://doi.org/10.1007/s00170-019-04301-0.

    Article  Google Scholar 

  8. Karaguzel, U., Bakkal, M., & Budak, E. (2016). Modeling and measurement of cutting temperatures in milling. Procedia CIRP, 46(1), 173–176. https://doi.org/10.1016/j.procir.2016.03.182.

    Article  Google Scholar 

  9. Lata, S., & Rana, R. (2018). Investigation of chip-tool interface temperature: effect of machining parameters and tool material on ferrous and non-ferrous metal. Materials Today: Proceedings, 5(2), 4250–4257. https://doi.org/10.1016/j.matpr.2017.11.689.

    Article  Google Scholar 

  10. Kesriklioglu, S., Arthur, C., Morrow, J. D., & Pfefferkorn, F. E. (2019). Characterization of tool-chip interface temperature measurement with thermocouple fabricated directly on the rake face. Journal of Manufacturing Science and Engineering. https://doi.org/10.1115/1.4044035.

    Article  Google Scholar 

  11. Martín, M. J., Cano, M. J., Castillo, G., Herrera, M. J., & Martín, F. (2018). Influence of milling parameters on mechanical properties of AA7075 aluminum under corrosion conditions. Materials, 11(9), 1751. https://doi.org/10.3390/ma11091751.

    Article  Google Scholar 

  12. Osman, K. A., Yılmaz, V., Ünver, H. Ö., Şeker, U., & Kiliç, S. E. (2020). Slot milling of titanium alloy with hexagonal boron nitride and minimum quantity lubrication and multi-objective process optimization for energy efficiency. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.120739.

    Article  Google Scholar 

  13. Zhang, T., Liu, Z., Sun, X., Xu, J., Dong, L., & Zhu, G. (2020). Investigation on specific milling energy and energy efficiency in high-speed milling based on energy flow theory. Energy, 192, 116596. https://doi.org/10.1016/j.energy.2019.116596.

    Article  Google Scholar 

  14. Verma, S., Gupta, M., & Misra, J. P. (2019). Study of thermal cycle, mechanical, and metallurgical properties of friction stir welded aviation grade aluminum alloy. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(11), 4202–4213. https://doi.org/10.1177/0954410018816601.

    Article  Google Scholar 

  15. Begic-Hajdarevic, D., Cekic, A., & Kulenovic, M. (2014). Experimental study on the high speed machining of hardened steel. Procedia Engineering, 69, 291–295. https://doi.org/10.1016/j.proeng.2014.02.234.

    Article  Google Scholar 

  16. Mia, M., Gupta, M. K., Lozano, J. A., Carou, D., Pimenov, D. Y., Królczyk, G., & Dhar, N. R. (2019). Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V. Journal of Cleaner Production, 210, 121–133. https://doi.org/10.1016/j.jclepro.2018.10.334.

    Article  Google Scholar 

  17. Khan, A. M., Jamil, M., Salonitis, K., Sarfraz, S., Zhao, W., He, N., & Zhao, G. (2019). Multi-objective optimization of energy consumption and surface quality in nanofluid SQCL assisted face milling. Energies, 12(4), 710. https://doi.org/10.3390/en12040710.

    Article  Google Scholar 

  18. Mia, M. (2017). Multi-response optimization of end milling parameters under through-tool cryogenic cooling condition. Measurement, 111, 134–145. https://doi.org/10.1016/j.measurement.2017.07.033.

    Article  Google Scholar 

  19. Kuram, E., Ozcelik, B., Bayramoglu, M., Demirbas, E., & Simsek, B. T. (2013). Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. Journal of Cleaner Production, 42, 159–166. https://doi.org/10.1016/j.jclepro.2012.11.003.

    Article  Google Scholar 

  20. Mia, M., Rifat, A., Tanvir, M. F., Gupta, M. K., Hossain, M. J., & Goswami, A. (2018). Multi-objective optimization of chip-tool interaction parameters using Grey-Taguchi method in MQL-assisted turning. Measurement, 129, 156–166. https://doi.org/10.1016/j.measurement.2018.07.014.

    Article  Google Scholar 

  21. Jaiswal, A., Peshwani, B., Shivakoti, I., & Bhattacharya, A. (2018). Multi response optimization of wire EDM process parameters. Materials Science and Engineering, 377, 1–7. https://doi.org/10.1088/1757-899X/377/1/012221.

    Article  Google Scholar 

  22. Tahir, W., Jahanzaib, M., & Raza, A. (2019). Effect of process parameters on cutting speed of wire EDM process in machining HSLA steel with cryogenic treated brass wire. Advances in Production Engineering & Management, 14(2), 143–152. https://doi.org/10.14743/apem2019.2.317.

    Article  Google Scholar 

  23. Abbasi, J. A., Jahanzaib, M., Azam, M., Hussain, S., Wasim, A., & Abbas, M. (2017). Effects of wire-cut EDM process parameters on surface roughness of HSLA steel. The International Journal of Advanced Manufacturing Technology, 91(5–8), 1867–1878. https://doi.org/10.1007/s00170-016-9881-9.

    Article  Google Scholar 

  24. Azam, M., Jahanzaib, M., Abbasi, J. A., Abbas, M., Wasim, A., & Hussain, S. (2016). Parametric analysis of recast layer formation in wire-cut EDM of HSLA steel. The International Journal of Advanced Manufacturing Technology, 87(1–4), 713–722. https://doi.org/10.1007/s00170-016-8518-3.

    Article  Google Scholar 

  25. Tahir, W., & Jahanzaib, M. (2019). Multi-objective optimization of WEDM using cold treated brass wire for HSLA hardened steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(11), 525. https://doi.org/10.1007/s40430-019-2028-9.

    Article  Google Scholar 

  26. Motorcu, A. R., Isik, Y., Kus, A., & Cakir, M. C. (2016). Analysis of the cutting temperature and surface roughness during the orthogonal machining of AISI 4140 alloy steel via the Taguchi method. Analysis, 50, 343–351. https://doi.org/10.17222/mit.2015.021.

    Article  Google Scholar 

  27. Zhenchao, Y., Yang, X., Yan, L., & Jin, X. (2018). The effect of milling parameters on surface integrity in high-speed milling of ultrahigh strength steel. Procedia CIRP, 71, 83–88. https://doi.org/10.1016/j.procir.2018.05.076.

    Article  Google Scholar 

  28. Azam, M., Jahanzaib, M., Wasim, A., & Hussain, S. (2015). Surface roughness modeling using RSM for HSLA steel by coated carbide tools. The International Journal of Advanced Manufacturing Technology, 78(5–8), 1031–1041. https://doi.org/10.1007/s00170-014-6707-5.

    Article  Google Scholar 

  29. Muaz, M., & Choudhury, S. K. (2019). Experimental investigations and multi-objective optimization of MQL-assisted milling process for finishing of AISI 4340 steel. Measurement, 138, 557–569. https://doi.org/10.1016/j.measurement.2019.02.048.

    Article  Google Scholar 

  30. Srinivasan, L., Khan, M. C., Kannan, T. D. B., Sathiya, P., & Biju, S. (2019). Application of genetic algorithm optimization technique in TIG welding of 15CDV6 aerospace steel. SILICON, 11(1), 459–469. https://doi.org/10.1007/s12633-018-9862-8.

    Article  Google Scholar 

  31. Rangajanardhaa, G. (2009). Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. Journal of materials processing technology, 209(3), 1512–1520. https://doi.org/10.1016/j.jmatprotec.2008.04.003.

    Article  Google Scholar 

  32. Tascioglu, E., Gharibi, A., & Kaynak, Y. (2019). High speed machining of near-beta titanium Ti-5553 alloy under various cooling and lubrication conditions. The International Journal of Advanced Manufacturing Technology, 102(9–12), 4257–4271. https://doi.org/10.1007/s00170-019-03291-3.

    Article  Google Scholar 

  33. Dong, L., Li, C., Bai, X., Zhai, M., Qi, Q., Yin, Q., & Li, L. (2019). Analysis of the cooling performance of Ti–6Al–4V in minimum quantity lubricant milling with different nanoparticles. The International Journal of Advanced Manufacturing Technology, 103(5–8), 2197–2206. https://doi.org/10.1007/s00170-019-03466-y.

    Article  Google Scholar 

  34. Panday, G., Ashraf, M. Z. I., Muneer, K. I., Hossain, K. S., Ashik, M. F. K., & Kamruzzaman, M. (2018). Assessing near-dry lubrication (35 ml/h) performance in hard turning process of hardened (48 HRC) AISI 1060 carbon steel. The International Journal of Advanced Manufacturing Technology, 99(5–8), 2045–2057. https://doi.org/10.1007/s00170-018-2629-y.

    Article  Google Scholar 

  35. Sampaio, M. A., Machado, Á. R., Laurindo, C. A. H., Torres, R. D., & Amorim, F. L. (2018). Influence of minimum quantity of lubrication (MQL) when turning hardened SAE 1045 steel: A comparison with dry machining. The International Journal of Advanced Manufacturing Technology, 98(1–4), 959–968. https://doi.org/10.1007/s00170-018-2342-x.

    Article  Google Scholar 

  36. Çakır, A., Yağmur, S., Kavak, N., Küçüktürk, G., & Şeker, U. (2016). The effect of minimum quantity lubrication under different parameters in the turning of AA7075 and AA2024 aluminium alloys. The International Journal of Advanced Manufacturing Technology, 84(9–12), 2515–2521. https://doi.org/10.1007/s00170-015-7878-4.

    Article  Google Scholar 

  37. Groover, M. P. (2020). Fundamentals of modern manufacturing: materials, processes, and systems. . Wiley.

  38. Coromant, S. (2010). Metal cutting technology-Technical guide. . SandvikCoromant.

  39. Liao, Y. S., Lin, H. M., & Chen, Y. C. (2007). Feasibility study of the minimum quantity lubrication in high-speed end milling of NAK80 hardened steel by coated carbide tool. International Journal of Machine Tools and Manufacture, 47(11), 1667–1676. https://doi.org/10.1016/j.ijmachtools.2007.01.005.

    Article  Google Scholar 

  40. Abd Rahim, E., & Dorairaju, H. (2018). Evaluation of mist flow characteristic and performance in Minimum Quantity Lubrication (MQL) machining. Measurement, 123, 213–225. https://doi.org/10.1016/j.measurement.2018.03.015.

    Article  Google Scholar 

  41. Bhirud, N. L., & Gawande, R. R. (2017). Measurement and prediction of cutting temperatures during dry milling: Review and discussions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(12), 5135–5158. https://doi.org/10.1007/s40430-017-0869-7.

    Article  Google Scholar 

  42. Cook, N. H. (1973). Tool wear and tool life. Journal of Engineering for Industry. https://doi.org/10.1115/1.3438271.

    Article  Google Scholar 

  43. Hazir, E., & Ozcan, T. (2019). Response surface methodology integrated with desirability function and genetic algorithm approach for the optimization of CNC machining parameters. Arabian Journal for Science and Engineering, 44(3), 2795–2809. https://doi.org/10.1007/s13369-018-3559-6.

    Article  Google Scholar 

  44. Nasirzadehroshenin, F., Maddah, H., & Sakhaeinia, H. (2020). Experimental and theoretical investigation of thermophysical properties of synthesized hybrid nanofluid developed by modeling approaches. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-020-04352-6.

    Article  Google Scholar 

  45. Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., & Pokomeda, K. (2014). Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource technology, 160, 150–160. https://doi.org/10.1016/j.biortech.2014.01.021.

    Article  Google Scholar 

  46. Singh, T., Dureja, J. S., Dogra, M., & Bhatti, M. S. (2018). Environment friendly machining of Inconel 625 under nano-fluid minimum quantity lubrication (NMQL). International Journal of Precision Engineering and Manufacturing, 19(11), 1689–1697. https://doi.org/10.1007/s12541-018-0196-7.

    Article  Google Scholar 

  47. Nouioua, M., Yallese, M. A., Khettabi, R., Belhadi, S., Bouhalais, M. L., & Girardin, F. (2017). Investigation of the performance of the MQL, dry, and wet turning by response surface methodology (RSM) and artificial neural network (ANN). The International Journal of Advanced Manufacturing Technology, 93(5–8), 2485–2504. https://doi.org/10.1007/s00170-017-0589-2.

    Article  Google Scholar 

  48. Kumar S, Singh D, Kalsi NS (2020) Performance Evaluation of TiN-Coated CBN Tools During Turning of Variable Hardened AISI 4340 Steel. In: Advanced Engineering Optimization Through Intelligent Techniques (pp. 847–857). Springer, Singapore. Doi:https://doi.org/10.1007/978-981-13-8196-6_76

  49. Halim, N. H. A., Haron, C. H. C., & Ghani, J. A. (2020). Sustainable machining of hardened inconel 718: A comparative study. International Journal of Precision Engineering and Manufacturing, 21(7), 1375–1387. https://doi.org/10.1007/s12541-020-00332-w.

    Article  Google Scholar 

  50. Zhang, H. P., Zhang, Q. Y., Ren, Y., Shay, T., & Liu, G. L. (2018). Simulation and experiments on cutting forces and cutting temperature in high speed milling of 300M steel under CMQL and dry conditions. International Journal of Precision Engineering and Manufacturing, 19(8), 1245–1251. https://doi.org/10.1007/s12541-018-0147-3.

    Article  Google Scholar 

  51. Özbek, O., & Saruhan, H. (2020). The effect of vibration and cutting zone temperature on surface roughness and tool wear in eco-friendly MQL turning of AISI D2. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2020.01.010.

    Article  Google Scholar 

  52. Islam, S., Khandoker, N., Izham, M., Azizi, T., & Debnath, S. (2017). Development of a low cost MQL setup for turning operations. In MATEC Web of Conferences (Vol. 95). https://doi.org/10.1051/matecconf/20179510004

  53. Khan, M. A., Mia, M., & Dhar, N. R. (2017). High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: Investigations on forces, temperature, and chips. The International Journal of Advanced Manufacturing Technology, 90(5–8), 1977–1991. https://doi.org/10.1007/s00170-016-9511-6.

    Article  Google Scholar 

  54. Camposeco-Negrete, C. (2015). Optimization of cutting parameters using response surface method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. Journal of cleaner production, 91, 109–117. https://doi.org/10.1016/j.jclepro.2014.12.017.

    Article  Google Scholar 

  55. Yan, J., & Li, L. (2013). Multi-objective optimization of milling parameters–the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52, 462–471. https://doi.org/10.1016/j.jclepro.2013.02.030.

    Article  Google Scholar 

  56. Bhushan, R. K. (2013). Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of Cleaner Production, 39, 242–254. https://doi.org/10.1016/j.jclepro.2012.08.008.

    Article  Google Scholar 

  57. Hanafi, I., Khamlichi, A., Cabrera, F. M., Almansa, E., & Jabbouri, A. (2012). Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools. Journal of Cleaner Production, 33, 1–9. https://doi.org/10.1016/j.jclepro.2012.05.005.

    Article  Google Scholar 

  58. Ethiraj, N., Sivabalan, T., Sivakumar, B., Vignesh Amar, S., Vengadeswaran, N., & Vetrivel, K. (2020). Effect of tool rotational speed on the tensile and microstructural properties of friction stir welded different grades of stainless steel joints. International Journal of Engineering, 33(1), 141–147. https://doi.org/10.5829/IJE.2020.33.01A.16.

    Article  Google Scholar 

  59. Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of quality technology, 12(4), 214–219. https://doi.org/10.1080/00224065.1980.11980968.

    Article  Google Scholar 

  60. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. . Wiley.

  61. Raza, M. H., Wasim, A., Ali, M. A., Hussain, S., & Jahanzaib, M. (2018). Investigating the effects of different electrodes on Al6061-SiC-7.5wt% during electric discharge machining. The International Journal of Advanced Manufacturing Technology, 99(9–12), 3017–3034. https://doi.org/10.1007/s00170-018-2694-2.

    Article  Google Scholar 

  62. Zerti, A., Yallese, M. A., Meddour, I., Belhadi, S., Haddad, A., & Mabrouki, T. (2019). Modeling and multi-objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations. The International Journal of Advanced Manufacturing Technology, 102(1–4), 135–157. https://doi.org/10.1007/s00170-018-2984-8.

    Article  Google Scholar 

  63. Rungrattanaubol, J., Na-udom, A., & Harfield, A. (2011). An exploratory neural network model for predicting disability severity from road traffic accidents in Thailand. In Proceedings of the Third International Conference on Knowledge and Smart Technologies (Vol. 2011, p. 23).

  64. Sarfraz, S., Jahanzaib, M., Wasim, A., Hussain, S., & Aziz, H. (2017). Investigating the effects of as-casted and in situ heat-treated squeeze casting of Al-3.5% Cu alloy Cu alloy. The International Journal of Advanced Manufacturing Technology, 89(9–12), 3547–3561. https://doi.org/10.1007/s00170-016-9350-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar ul Hassan Khawaja.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khawaja, A.u.H., Jahanzaib, M. & Munawar, M. Optimizing the Performance of High-Speed Machining on 15CDV6 HSLA Steel in Terms of Green Manufacturing Using Response Surface Methodology and Artificial Neural Network. Int. J. Precis. Eng. Manuf. 22, 1125–1145 (2021). https://doi.org/10.1007/s12541-021-00520-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00520-2

Keywords

Navigation