Skip to main content
Log in

C*-Envelope and Dilation Theory of Semigroup Dynamical Systems

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we construct, for a certain class of semigroup dynamical systems, two operator algebras that are universal with respect to their corresponding covariance conditions: one being selfadjoint, and another being nonselfadjoint. We prove that the C*-envelope of the nonselfadjoint operator algebra is precisely the selfadjoint one. This result leads to a number of new examples of operator algebras and their C*-envelopes, with many from number fields and commutative rings. We further establish the functoriality of these operator algebras along with their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson, W.: The noncommutative Choquet boundary II: hyperrigidity. Israel J. Math. 184, 349–385 (2011)

    Article  MathSciNet  Google Scholar 

  2. Arveson, W.B.: Subalgebras of \(\rm C^\ast \)-algebras. Acta Math. 123, 141–224 (1969)

    Article  MathSciNet  Google Scholar 

  3. Barlak, S., Omland, T., Stammeier, N.: On the \(K\)-theory of \(\rm C^\ast \)-algebras arising from integral dynamics. Ergod. Theory Dyn. Syst. 38(3), 832–862 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bruce, C.: \(\rm C^*\)-algebras from actions of congruence monoids on rings of algebraic integers. Trans. Am. Math. Soc. 373(1), 699–726 (2020)

    Article  MathSciNet  Google Scholar 

  5. Cuntz, J.: Simple \(\rm C^\ast \)-algebras generated by isometries. Comm. Math. Phys. 57(2), 173–185 (1977)

    Article  MathSciNet  Google Scholar 

  6. Cuntz, J.: \(\rm C^\ast \)-algebras associated with the \(ax+b\)-semigroup over N. In: \(K\)-Theory and Noncommutative Geometry, EMS Series of Congress Reports, pp. 201–215. European Mathematical Society, Zürich (2008)

  7. Cuntz, J., Deninger, C., Laca, M.: \(\rm C^\ast \)-algebras of Toeplitz type associated with algebraic number fields. Math. Ann. 355(4), 1383–1423 (2013)

    Article  MathSciNet  Google Scholar 

  8. Cuntz, J., Li, X.: The regular \(\rm C^\ast \)-algebra of an integral domain. In: Quanta of Maths, Volume 11 of Clay Mathematics Proceedings, pp. 149–170. American Mathematical Society, Providence, RI (2010)

  9. Davidson, K.R.: \(\rm C^\ast \)-algebras by example. Fields Institute Monographs, vol. 6. American Mathematical Society, Providence, RI (1996)

  10. Davidson, K.R., Fuller, A.H., Kakariadis, E.T.A.: Semicrossed products of operator algebras by semigroups. Mem. Am. Math. Soc. 247(1168), v+97 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Davidson, K.R., Katsoulis, E.G.: Operator algebras for multivariable dynamics. Mem. Am. Math. Soc. 209(982), viii+53 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Davidson, K.R., Katsoulis, E.G.: Semicrossed products of the disk algebra. Proc. Am. Math. Soc. 140(10), 3479–3484 (2012)

    Article  MathSciNet  Google Scholar 

  13. Davidson, K.R., Kennedy, M.: The Choquet boundary of an operator system. Duke Math. J. 164(15), 2989–3004 (2015)

    Article  MathSciNet  Google Scholar 

  14. Dor-On, A., Katsoulis, E.: Tensor algebras of product systems and their \({\rm C}^*\)-envelopes. J. Funct. Anal. 278(7), 108416 (2020)

    Article  MathSciNet  Google Scholar 

  15. Dritschel, M.A., McCullough, S.A.: Boundary representations for families of representations of operator algebras and spaces. J. Oper. Theory 53(1), 159–167 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Duncan, B.L., Peters, J.R.: Operator algebras and representations from commuting semigroup actions. J. Oper. Theory 74(1), 23–43 (2015)

    Article  MathSciNet  Google Scholar 

  17. Exel, R.: A new look at the crossed-product of a \(\rm C^\ast \)-algebra by an endomorphism. Ergod. Theory Dyn. Syst. 23(6), 1733–1750 (2003)

    Article  MathSciNet  Google Scholar 

  18. Fuller, A.H.: Nonself-adjoint semicrossed products by abelian semigroups. Can. J. Math. 65(4), 768–782 (2013)

    Article  MathSciNet  Google Scholar 

  19. Hamana, M.: Injective envelopes of operator systems. Publ. Res. Inst. Math. Sci. 15(3), 773–785 (1979)

    Article  MathSciNet  Google Scholar 

  20. Humeniuk, A.: C*-envelopes of semicrossed products by lattice ordered abelian semigroups. arXiv:2001.07294 (2020)

  21. Kakariadis, E.T.A.: Semicrossed products of \({{\rm C}}^{\ast }\)-algebras and their \({{\rm C}}^{\ast }\)-envelopes. J. Anal. Math. 129, 1–31 (2016)

    Article  MathSciNet  Google Scholar 

  22. Kakariadis, E.T.A., Katsoulis, E.G.: Contributions to the theory of C*-correspondences with applications to multivariable dynamics. Trans. Am. Math. Soc. 364(12), 6605–6630 (2012)

    Article  MathSciNet  Google Scholar 

  23. Kakariadis, E.T.A., Katsoulis, E.G.: Semicrossed products of operator algebras and their \({\rm C}^*\)-envelopes. J. Funct. Anal. 262(7), 3108–3124 (2012)

    Article  MathSciNet  Google Scholar 

  24. Kakariadis, E.T.A., Peters, J.R.: Representations of \(\rm C^*\)-dynamical systems implemented by Cuntz families. Münster J. Math. 6(2), 383–411 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Katsoulis, E.G., Ramsey, C.: Crossed products of operator algebras. Mem. Am. Math. Soc. 258(1240), vii+85 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Kwaśniewski, B.K.: Exel’s crossed product and crossed products by completely positive maps. Houston J. Math. 43(2), 509–567 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Laca, M.: From endomorphisms to automorphisms and back: dilations and full corners. J. Lond. Math. Soc. (2) 61(3), 893–904 (2000)

    Article  MathSciNet  Google Scholar 

  28. Laca, M., Raeburn, I.: Semigroup crossed products and the Toeplitz algebras of nonabelian groups. J. Funct. Anal. 139(2), 415–440 (1996)

    Article  MathSciNet  Google Scholar 

  29. Larsen, N.S.: Crossed products by abelian semigroups via transfer operators. Ergod. Theory Dyn. Syst. 30(4), 1147–1164 (2010)

    Article  MathSciNet  Google Scholar 

  30. Larsen, N.S., Li, X.: The 2-adic ring \(\rm C^\ast \)-algebra of the integers and its representations. J. Funct. Anal. 262(4), 1392–1426 (2012)

    Article  MathSciNet  Google Scholar 

  31. Li, X.: Ring \(\rm C^\ast \)-algebras. Math. Ann. 348(4), 859–898 (2010)

    Article  MathSciNet  Google Scholar 

  32. Li, X.: Semigroup \({\rm C}^*\)-algebras and amenability of semigroups. J. Funct. Anal. 262(10), 4302–4340 (2012)

    Article  MathSciNet  Google Scholar 

  33. Muhly, P.S., Solel, B.: An algebraic characterization of boundary representations. In: Nonselfadjoint Operator Algebras, Operator Theory, and Related Topics, Volume 104 of Operator Theory: Advances and Applications, pp. 189–196. Birkhäuser, Basel (1998)

  34. Murphy, G.J.: Crossed products of \(\rm C^\ast \)-algebras by endomorphisms. Integr. Equ. Oper. Theory 24(3), 298–319 (1996)

    Article  MathSciNet  Google Scholar 

  35. Nica, A.: \(\rm C^\ast \)-algebras generated by isometries and Wiener-Hopf operators. J. Oper. Theory 27(1), 17–52 (1992)

    MathSciNet  MATH  Google Scholar 

  36. Peters, J.: Semicrossed products of \(\rm C^\ast \)-algebras. J. Funct. Anal. 59(3), 498–534 (1984)

    Article  MathSciNet  Google Scholar 

  37. Sarason, D.: Invariant subspaces and unstarred operator algebras. Pac. J. Math. 17, 511–517 (1966)

    Article  MathSciNet  Google Scholar 

  38. Stacey, P.J.: Crossed products of \(\rm C^\ast \)-algebras by \(\ast \)-endomorphisms. J. Aust. Math. Soc. Ser. A 54(2), 204–212 (1993)

    Article  MathSciNet  Google Scholar 

  39. Wiart, J.: Dilating covariant representations of a semigroup dynamical system arising from number theory. Integr. Equ. Oper. Theory 84(2), 217–233 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported by a fellowship of the Pacific Institute for the Mathematical Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B. C*-Envelope and Dilation Theory of Semigroup Dynamical Systems. Integr. Equ. Oper. Theory 93, 19 (2021). https://doi.org/10.1007/s00020-021-02636-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-021-02636-6

Keywords

Mathematics Subject Classification

Navigation