Skip to main content

Advertisement

Log in

Enhanced electron density and plasma dynamics on nanosecond time scales in Helium plasma discharges

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Enhanced electron density and plasma dynamics are investigated for Helium discharges on nanosecond timescales with Particle-In-Cell simulations. The plasma discharges are driven between planar electrodes with DC, single pulses, and dynamic frequency square waves. It is assumed that the DC and pulse discharges operate in the glow regime. It is shown that as pressure increases with narrowing gap distance, the peak transient electron density rises. This is in contrast to what is observed under a constant pressure-gap (pd) and electric field reduced by neutral density (E/N) values at saturation time. It is shown that although the pd and E/N values and therefore the breakdown voltage are the same across cases, the plasma kinetics are different due to a change in the energy relaxation lengths. The cross-points between the sheath length and energy relaxation length move to higher electron energies at higher pressure. This facilitates high-energy electrons to undergo inelastic collisions and produces different rates of increasing electron density and temperature at nanosecond timescales. Moreover, using a plasma frequency-dependent square wave, the electron density can be increased to 50 times higher over that of the DC case because of a reverse electric field. The electron kinetics on nanosecond time scales can be exploited for high electron density and fast ionization applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. B. Cohen, L. Thompson, N. Opalinski, P. Singletary, M. Walker, C. Chan, M. Gołkowski, IEEE AP-S Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (2017)

  2. K. Takashima, I.V. Adamovich, Z. Xiong, M.J. Kushner, S. Starikovskaia, U. Czarnetzki, D. Luggenhölscher, Phys. Plasmas 18, 083505 (2011)

    Article  ADS  Google Scholar 

  3. H.Y. Kim, M. Golkowski, Plasma Sources Sci. Technol. 27, 105015 (2018)

    Article  ADS  Google Scholar 

  4. H.Y. Kim, M. Gołkowski, C. Gołkowski, P. Stoltz, M.B. Cohen, M. Walker, Plasma Sources Sci. Technol. 27, 055011 (2018)

    Article  ADS  Google Scholar 

  5. S. Abuazoum, S.M. Wiggins, R.C. Issac, G.H. Welsh, G. Vieux, M. Ganciu, D.A. Jaroszynski, Rev. Sci. Instrum. 82, 063505 (2011)

    Article  ADS  Google Scholar 

  6. ...I. Adamovich, S.D. Baalrud, A. Bogaerts, P.J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J.G. Eden, P. Favia, D.B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I.D. Kaganovich, U. Kortshagen, M.J. Kushner, N.J. Mason, S. Mazouffre, S.M. Thagard, H.R. Metelmann, A. Mizuno, E. Moreau, A.B. Murphy, B.A. Niemira, G.S. Oehrlein, Z.L. Petrovic, L.C. Pitchford, Y.K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M.M. Turner, M.C.M. Sanden, A. Vardelle, J. Phys. D. Appl. Phys. 50, 323001 (2017)

    Article  Google Scholar 

  7. M. Gołkowski, C. Gołkowski, J. Leszczynski, S.R. Plimpton, P. Masłowski, A. Foltynowicz, J. Ye, B. McCollister, IEEE Trans. Plasma Sci. 40, 8 (2012)

    Article  Google Scholar 

  8. S.R. Plimpton, M. Gołkowski, D.G. Mitchell, C. Austin, S.S. Eaton, G.R. Eaton, C. Gołkowski, M. Voskuil, Biotechnol. Bioeng. 110, 7 (2013)

    Article  Google Scholar 

  9. P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G. Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D.F. Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S.M. Thagard, D. Minakata, E.C. Neyts, J. Pawlat, Z.L. Petrovic, R. Pflieger, S. Reuter, D.C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T.V. Woedtke, K.R. Wilson, K. Yasui, G. Zvereva, Plasma Sources Sci. Technol. 25, 053002 (2016)

    Article  ADS  Google Scholar 

  10. H.Y. Kim, S.K. Kang, S.M. Park, H.Y. Jung, B.H. Choi, J.Y. Sim, J.K. Lee, Plasma Process. Polym. 12, 1423 (2015)

    Article  Google Scholar 

  11. M. B. Cohen, US Patent, 10601125 B2 (2020)

  12. P.J. Singletary, M.B. Cohen, M.L.R. Walker, C.Y. Liu, C.Y. Chan, IEEE Trans. Plasma Sci. 48, 1 (2020)

    Article  Google Scholar 

  13. C.Y. Liu, M.B. Cohen, M.L.R. Walker, IEEE Trans. Plasma Sci. 48, 4 (2020)

    Article  Google Scholar 

  14. G.A. Mesyats, M.I. Yalandin, Physics-Uspekhi 48, 3 (2005)

    Article  Google Scholar 

  15. Y. Fu, X. Wang, X. Zou, S. Yang, J.P. Verboncoeur, A.J. Christlieb, Phys. Plasmas 24, 083510 (2017)

    Article  ADS  Google Scholar 

  16. T. Shao, G. Sun, P. Yan, S. Zhang, Jpn. J. Appl. Phys. 46, 2 (2007)

    Article  Google Scholar 

  17. N.L. Bashlov, V.M. Milenin, G.J. Panasjuk, N.A. Timofeev, J. Phys. D 26, 410 (1993)

    Article  ADS  Google Scholar 

  18. David B. Go, D.A. Pohlman, J. Appl. Phys. 107, 103303 (2010)

    Article  ADS  Google Scholar 

  19. W. Zhang, T.S. Fisher, S.V. Garimella, J. Appl. Phys. 96, 11 (2004)

    Google Scholar 

  20. Z.L. Petrović, N. Škoro, D. Marić, C.M.O. Mahony, P.D. Maguire, M.R. Radenović, G. Malović, J. Phys. D Appl. Phys. 41, 194002 (2008)

    Article  ADS  Google Scholar 

  21. M.R. Radjenović, J.K. Lee, Phys. Plasmas 12, 063501 (2005)

    Article  ADS  Google Scholar 

  22. R. Massarczyk, P. Chu, C. Dugger, S.R. Elliott, K. Rielage, W. Xu, JINST 12, P06019 (2017)

    Article  ADS  Google Scholar 

  23. M.U. Lee, J. Lee, J.K. Lee, G.S. Yun, Plasma Sources Sci. Technol. 28, 034003 (2017)

    Article  ADS  Google Scholar 

  24. M. Puač, D. Marić, M.R. Radjenović, M. Šuvakov, Z.L. Petrović, Plasma Sources Sci. Technol. 27, 075013 (2018)

    Article  ADS  Google Scholar 

  25. M.R. Radjenović, J.K. Lee, F. Iza, G.Y. Park, J. Phys. D Appl. Phys. 38, 950 (2005)

    Article  ADS  Google Scholar 

  26. W.S. Boyle, P. Kisliuk, Phys. Rev. 97, 2 (1955)

    Article  Google Scholar 

  27. D. Levko, L.L. Raja, Phys. Plasmas 22, 123518 (2015)

    Article  ADS  Google Scholar 

  28. A. Bataller, J. Koulakis, S. Pree, S. Putterman, Appl. Phys. Lett. 105, 223501 (2014)

    Article  ADS  Google Scholar 

  29. A.A. Kudryavtsev, A.I. Saifutdinov, M.S. Stefanova, P.M. Pramatarov, S.S. Sysoev, Phys. Plasmas 24, 054507 (2017)

    Article  ADS  Google Scholar 

  30. L. Xu, A.V. Khrabrov, I.D. Kaganovich, T.J. Sommerer, Plasma Sources Sci. Technol. 27, 104004 (2018)

    Article  ADS  Google Scholar 

  31. S.O. Macheret, M.N. Shneider, R.C. Murray, Phys. Plasmas 13, 023502 (2006)

    Article  ADS  Google Scholar 

  32. S.O. Macheret, M.N. Shneider, Phys. Plasmas 20, 101608 (2013)

    Article  ADS  Google Scholar 

  33. D. Levko, Ya.. E. Krasik, J. Appl. Phys. 112, 113302 (2012)

    Article  ADS  Google Scholar 

  34. D. Levko, S. Yatom, V. Vekselman, J.Z. Gleizer, V.T. Gurovich, Y.E. Krasik, J. Appl. Phys. 111, 013304 (2012)

    Article  ADS  Google Scholar 

  35. Z. L. Petrović, S. D.ujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić, J. Jovanović, V. Stojanović, M. R. Rađenović, J. Phys. D Appl. Phys. 42, 194002 (2009)

  36. Z.L. Petrović, D. Marić, M. Savić, S. Marjanović, S. Dujko, G. Malović, Plasma Process Polym. 14, 1600124 (2017)

    Article  Google Scholar 

  37. H. Change, C.M. Ryu, S.J. Yoo, S.B. Kim, S.J. You, J. Phys. D Appl. Phys. 45, 195206 (2012)

    Article  ADS  Google Scholar 

  38. J. Choi, F. Iza, J.K. Lee, C.M. Ryu, IEEE Trans. Plasma Sci. 35, 5 (2007)

    Google Scholar 

  39. H.C. Kim, J.K. Lee, Phys. Rev. Lett. 93, 8 (2004)

    Google Scholar 

  40. H.C. Kwon, S.Y. Jung, H.Y. Kim, I.H. Won, J.K. Lee, Phys. Plasmas 21, 033511 (2014)

    Article  ADS  Google Scholar 

  41. H.C. Kwon, H.Y. Kim, I.H. Won, H.W. Lee, H.K. Shin, J.K. Lee, Phys. Plasmas 20, 023506 (2013)

    Article  ADS  Google Scholar 

  42. F. Iza, J.K. Lee, M.G. Kong, Phys. Rev. Lett. 99, 075004 (2007)

    Article  ADS  Google Scholar 

  43. J.P. Verboncoeur, M.V. Alves, V. Vahedi, C.K. Birdsall, J. Comput. Phys. 104, 321 (1993)

    Article  ADS  Google Scholar 

  44. V. Vahedi, G. Dipeso, C.K. Birdsall, M.A. Lieberman, T.D. Rognlien, Plasma Sources Sci. Technol. 2, 261 (1993)

    Article  ADS  Google Scholar 

  45. H.C. Kim, F. Iza, S.S. Yang, M. Radmilović, J.K. Lee, J. Phys. D Appl. Phys. 38, R283 (2005)

    Article  Google Scholar 

  46. M.M. Turner, Phys. Plasmas 13, 033506 (2006)

    Article  ADS  Google Scholar 

  47. K.J. Chung, J.J. Dang, J.Y. Kim, W.H. Cho, Y.S. Hwang, New J. Phys. 18, 105006 (2016)

    Article  ADS  Google Scholar 

  48. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Material Processing, 2nd edn. (Wiley, New York, 2005), pp. 45, 691

    Book  Google Scholar 

  49. U.S. Inan, M. Golkowski, Principles of Plasma Physics for Engineers and Scientists, Chapter 7 (Wiley, New York, 2011)

    Google Scholar 

  50. J.T. Gudmundsson, A. Hecimovic, Plasma Sources Sci. Technol. 26, 123001 (2017)

    Article  ADS  Google Scholar 

  51. Y.P. Raizer, M.N. Shneider, High Temp. 27, 329 (1989)

    Google Scholar 

  52. D. Levko, L.L. Raja, Phys. Plasmas 25, 013509 (2018)

    Article  ADS  Google Scholar 

  53. D. Levko, L.L. Raja, Phys. Plasmas 23, 073513 (2016)

    Article  ADS  Google Scholar 

  54. H.W. Lee, G.Y. Park, Y.S. Seo, Y.H. Im, S.B. Shim, H.J. Lee, J. Phys. D Appl. Phys. 44, 053001 (2011)

    Article  ADS  Google Scholar 

  55. Z. Donkó, S. Hamaguchi, T. Gans, Plasma Sources Sci. Technol. 27, 054001 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Kim.

Ethics declarations

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.Y., Gołkowski, M. & Harid, V. Enhanced electron density and plasma dynamics on nanosecond time scales in Helium plasma discharges. Eur. Phys. J. D 75, 134 (2021). https://doi.org/10.1140/epjd/s10053-021-00144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00144-1

Navigation