Skip to main content
Log in

Variations in Nitrogen Isotope Composition in Clay Deposits of the Permian–Triassic Boundary Beds in the Verkhoyansk Region (Northeast Asia) and Their Implication for Reconstruction of Marine Environments

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

The first sediment N-isotope data on the Permian–Triassic boundary transition of the Verkhoyansk region are obtained. Together with the other published materials on other regions of eastern Russia allow us to distinguish a number of N-isotope intervals of various ranks in the Permian–Triassic of eastern Russia. In addition to the well-known method of reconstructing the redox conditions of the marine environment from N‑isotope data (in combination with data on elevated concentrations of redox-sensitive trace metals), the possibility of using N-isotope data also to determine the direction of temperature changes in the marine environment is substantiated. It is assumed that N-isotope signals are primarily a reflection of events associated with denitrification and N2 fixation, the main processes of the global nitrogen biogeochemical cycle (NBC). Deviations in the direction of increasing δ15N values in the considered sections are associated with an increase in upwelling activity and the supply of cool deep waters enriched in the heavy N isotope to the shelf zone; the opposite deviations are associated with a slowdown or cessation of inflow of cool deep waters. The N-isotope data obtained, in combination with the published materials on O-isotope thermometry in the Tethyan Superrealm during the Permian and Triassic, indicate a very likely coincidence of the direction of temperature changes caused by both regional (upwelling) and global (climatic) events of that time. In this regard, the reconstructions of the marine environment that we conduct by the example of the Permian–Triassic sections of Northeast Asia (Verkhoyansk, Kolyma–Omolon, and South Primorye) seem to be appropriate, although they require additional confirmation on the material from other sections of the world. The problems associated with differences in the average δ15N values in the Permian–Triassic sections of different provinces of the Boreal Superrealm, as well as other superrealms, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Algeo, T.J., Rowe, H., Hower, J.C., Schwark, L., Hermann, A., and Heckek, P.H., Oceanic denitrification during Late Carboniferous glacial-interglacial cycles, Nat. Geosci., 2008, vol. 1, pp. 709–714.

    Article  Google Scholar 

  2. Algeo, T., Henderson, C.M., Ellwood, B., Rowe, H., Elswick, E., Bates, S., Lyons, T., Hower, J.C., Smith, C., Maynard, B., Nays, L.E., Summons, R.E., Fulton, J., and Freeman, K.N., Evidence for a diachronous Late Permian marine crisis from Canadian Arctic region, Geology, 2012, vol. 124, nos. 9/10, pp. 1424–1448.

    Google Scholar 

  3. Algeo, T.J., Meyers, P.A., Robinson, R.S., Rowe, H., and Jiang, G.Q., Icehouse-greenhouse variations in marine denitrification, Biogeosciences, 2014, vol. 11, pp. 1273–1295.

    Article  Google Scholar 

  4. Altabet, M.A., Francois, R., Murray, D.W., and Prell, W.L., Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios, Nature, 1995, vol. 373, pp. 506–509.

    Article  Google Scholar 

  5. Bakun, A., Black, B.A., Bograd, S.J., Garcia-Reyes, M., Miller, A.J., Rykaczewski, R.R., and Sydeman, W.J., Anticipated effects of climate change on coastal upwelling ecosystems, Curr. Clim. Change Rep., 2015, vol. 1, pp. 85–93.

    Article  Google Scholar 

  6. Baud, A.M., Margaritz, M., and Holser, W.T., Permian–Triassic of the Tethys: Carbon isotope stratigraphy, Geol. Rundsch., 1989, vol. 78, pp. 649–677.

    Article  Google Scholar 

  7. Bauersachs, T., Schouten, S., Compaore, J., Wollenzien, U., Stähl, L.J., and Damsteé, J.S.S., Nitrogen isotopic fractionation associated with growth on dinitrogen gas and nitrate by cyanobacteria, Limnol. Oceanogr., 2009, vol. 54, no. 4, pp. 1403–1411.

  8. Berlin, T.S. and Khabakov, A.V., The chemico-analytical method for determination of Ca/Mg ratio in belemnoid rostra as a method of evaluating habitat temperatures in Cretaceous seas of the USSR, Geokhimiya, 1966, no. 11, pp. 45–53.

  9. Biakov, A.S., Permskie otlozheniya Balygchanskogo podnyatiya (Severo-Vostok Azii) (Permian Rock Sequences of the Balygychan Uplift (Northeast Asia)), Magadan: Sev.-Vost. Kompl. Nauchno-Issled. Inst. Dal’nevost. Otd. Ross. Akad. Nauk, 2004 [in Russian].

  10. Biakov, A.S. and Vedernikov, I.L., Evidence for anoxia in deep basin of Northeast Asia at the Permian–Triassic transition, Dokl. Earth Sci., 2007, vol. 417A, no. 9, pp. 1325–1327.

    Article  Google Scholar 

  11. Biakov, A.S., Zakharov, Yu.D., Horacek, M., Rikhoz, S., Kutygin, R.V., Ivanov, Yu.Yu., Kolesov, E.V., Konstantinov, A.G., Tuchkova, M.I., and Mikhalitsyna, T.I., New data on the structure and age of the terminal Permian strata in the South Verkhoyansk region (northeastern Asia), Russ. Geol. Geophys., 2016, vol. 57, no. 2, pp. 282–293.

    Article  Google Scholar 

  12. Biakov, A.S., Horacek, M, Goryachev, N.A., Vedernikov, I.L., and Zakharov, Yu.D., The first detailed δ13Corg record in Permo-Triassic boundary deposits in the Kolyma–Omolon Region (Northeast Asia), Dokl. Earth Sci., 2017, vol. 474, no. 1, pp. 591–594.

    Article  Google Scholar 

  13. Biakov, A.S., Kutygin, R.V., Goryachev, N.A., Burnatnyi, S.S., Naumov, A.N., Yadrenkin, A.V., Vedernikov, I.L., Tret’yakov, M.F., and Bryn’ko, I.V., Discovery of the Late Changhsingian bivalve complex and two fauna extinction episodes in Northeastern Asia at the end of the Permian, Dokl. Biol. Sci., 2018, vol. 480, no. 1, pp. 78–81.

    Article  Google Scholar 

  14. Bond, D.G. and Wignall, P.B., Pyrite framboid study of marine Permian–Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction, Geology, 2010, vol. 122, nos. 7/8, pp. 1265–1279.

    Google Scholar 

  15. Boulila, S., Laskar, J., Haq, B.U., Galbrun, B., and Hara, N., Long-term cyclicities in Phanerozoic sea-level sedimentary record and their potential drivers (Does the Fanerozoic sea level encode the motion of solar system in the Milky Way?), Suppl. Mater. (SM1 & SM2), 2018. https://arxiv.org/pdf/ 1803.05623.

  16. O’Brien, C.L., Robinson, S.A., Pancost, R.D., Damsté, J.S.S., Schouten, S., Lunt, D., Alsenz, H., Bornemann, A., Bottini, C., Brassell, S.C., et al., Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes, Earth-Sci. Rev., 2017, vol. 172, pp. 224–247. https://doi.org/10.1016/j.earscirev.2017.07.012

    Article  Google Scholar 

  17. Dagys, A. and Ermakova, S., Induan (Triassic) ammonoids from North-Eastern Asia, Rev. Paléobiol., 1996, vol. 15, no. 2, pp. 401–447.

    Google Scholar 

  18. Dagys, A.S. and Kazakov, A.M., Stratigrafiya, litologiya i tsiklichnost' triasovykh otlozhenii severa Srednei Sibiri (Stratigraphy, Lithology, and Cyclicity of the North of Central Siberia), Novosibirsk: Nauka, 1984 [in Russian].

  19. Dagys, A.S., Arkhipov, Yu.V., and Trushchelev, A.M., Excursion 054. Permian and Triassic deposits of Yakutia, in Svodnyi putevoditel' ekskursii 052, 053, 054, 055 (27-i Mezhd. geol. kongr.), Yakutskaya ASSR, Sibirskaya platforma (Summary Field Guide Book of excursions 052, 053, 05 and 055 (27th International Geological Congress). Yakut ASSR. Siberian Platform), Novosibirsk: Nauka, 1984, pp. 68–89 [in Russian].

  20. Deutsch, B., Forster, S., Wilhelm, M., Dippner, J.W., and Voss, M., Denitrification in sediments as a major nitrogen sink in the Baltic Sea: An extrapolation using sediment characteristic, Biogeosciences, 2010, vol. 7, pp. 3259–3271.

    Article  Google Scholar 

  21. Dobruskina, I.A., Triassic floras, in Paleozoiskie i mezozoiskie flory Evrazii i fitogeografiya etogo vremeni (Paleozoic and Mesozoic Floras of Eurasia and Phytogeography of This Time), Moscow: Nauka, 1970.

  22. Domokhotov, S.V., Induan Stage and the Otoceras Zone in the eastern Verkhoyansk Region, in Materialy po geologii i poleznym iskopaemym Yakutskoi ASSR. Chast’ pervaya (Materials on Geology and Mineral Resources of the Yakut ASSR. Pt. I), Kobelyatskii, I.A., Ed., Yakutsk: Yakutsk. Kn. Izd., 1960, pp. 111–120 [in Russian].

  23. Dustira, A.M., Wignall, P.B., Joachimski, M., Blomeier, D., Hartkopf-Fröder, C., and Bond, D.P.G., Gradual onset of anoxia across the Permian–Triassic boundary in Svalbard, Norway, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2013, vol. 374, pp. 303–313.

    Article  Google Scholar 

  24. Eilier, J.M., “Clumed-isotope” geochemistry – The study of naturally-occurring, multiply-substituted isotopologues, Earth Planet. Sci. Lett., 2007, vol. 262, pp. 309–327.

    Article  Google Scholar 

  25. Ganeshram, R.S., Pedersen, T.F., Calvert, S.E., McNeill, G.W., and Fontugne, M. R., Glacial-interglacial variability in denitrification in the world’s oceans: Causes and consequences, Paleoceanography, 2000, vol. 15, no. 4, pp. 361–376.

    Article  Google Scholar 

  26. Goudemand, N., Romano, C., Brayard, A., Hochuli, P.A., and Bucher, H., Comment on “Lethally hot temperatures during the Early Triassic greenhouse”, Science, 2013, vol. 339, pp. 1033a–1033c.

    Article  Google Scholar 

  27. Grasby, S.E. and Beauchamp, B., Intrabasin variability of the carbon-isotope record across the Permian–Triassic transition, Sverdrup Basin, Arctic Canada, Chem. Geol., 2008, vol. 253, pp. 141–150.

    Article  Google Scholar 

  28. Grasby, S.E., Beauchamp, B., Embry, A., and Sarnei, H., Recurrent Early Triassic ocean anoxia, Geology, 2012, vol. 41, no. 2, pp. 175–178.

    Article  Google Scholar 

  29. Grasby, S.E., Sanei, H., Beachamp, B., and Chen, Z., Mercury deposition through the Permo-Triassic biotic crisis, Chem. Geol., 2013, vol. 351, pp. 209–216.

    Article  Google Scholar 

  30. Grasby, S.E., Beauchamp, B., Bond, D.P.G., Wignall, P., Talavera, C., Galloway, J.M., Piepjohn, K., Reinhardt, L., and Blomeier, D., Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction, Geol. Soc. Am. Bull., 2015, vol. 127, pp. 1331–1347.

    Article  Google Scholar 

  31. Grasby, S.E., Beauchamp, B., and Knies, J., Early Triassic productivity crises delayed recovery from world’s worst mass extinction, Geology, 2016. https://doi.org/10.1130/G38141.1

  32. Grasby, S.E., Beauchamp, B., Bond, D.P.G., Wignall, P., and Sanei, H., Mercury anomalies associated with three extinction events (Capitanian Crises, Latest Permian Extinction, and the Smithian/Spathian Extinction in NW Pangea, Geol. Mag., 2018, vol. 153, pp. 285–297.

    Article  Google Scholar 

  33. Gruber, N., The dynamics of the marine nitrogen cycle and its influence on atmospheric C2 changes, in The Ocean Carbon Cycle and Climate. NATO AST Series, Follows, M. and Oguz, T., Eds., Dordrecht: Kluwer, 2004, pp. 97–148.

    Google Scholar 

  34. Hammer, D., Jones, M.T., Schneebeli-Hermann, E., Hansen, B.B., and Bucher, H., Are Early Triassic extinction events associate with mercury anomalies? A reassessment of the Smithian/Spathian boundary extinction, Earth-Sci. Rev., 2019. https://doi.org/10.1016/j.earscirev.2019.04.016

  35. Hang, G.H., Pedersen, T.F., Sigman, D.V., Calvert, S.E., Nielsen, B., and Peterson, L.C., Glacial/interglacial variations in production and nitrogen fixation in the Cariaco Basin during the last 580 kyr, Paleoceanography, 1996, vol. 13, no. 5, pp. 427–432.

    Google Scholar 

  36. Henkes, G.A., Passey, B.H., Grossman, E.L., Shenton, B.J., Pérez-Huerta, A., and Yancey, T.E., Temperature limits for preservation of primary calcite clumped isotope paleotemperatures, Geochim. Cosmochim. Acta, 2014, vol. 139, pp. 362–368.

    Article  Google Scholar 

  37. Hermann, E., Hochuli, P.A., Bucher, H., Vigran, J.O., Weissert, H., and Bernasconi, S.M., A close-up view of the Permian–Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark Platform), Global Planet. Change, 2010, vol. 74, pp. 156–167.

    Article  Google Scholar 

  38. Hermann, E., Hochuli, P.A., Méhay, S., Bucher, H., Brühwiler, T., Ware, D., Hautmann, M., Roohi, G., ur-Rehman, K., and Yaseen, A., Organic matter and palaeoenvironmental signals during the Early Triassic biotic recovery: The Salt Range and Surgar Range records, Sedim. Geol., 2011, vol. 234, pp. 19–41.

    Article  Google Scholar 

  39. Horacek, M., Brander, R., and Abart, R., Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: Evidence for rapid changes in storage of organic carbon, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007a, vol. 252, pp. 347–354.

    Article  Google Scholar 

  40. Horacek, M., Richoz, S., Brandner, R., Krystyn, L., and Spötl, C., Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys: The δ13C record from marine sections in Iran, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007b, vol. 252, pp. 355–369.

    Article  Google Scholar 

  41. Horacek, M., Wang, X.-D., Grossman, E.L., Richoz, S., and Cao, Z., The carbon-isotope curve from the Chaohu section, China: Different trends at the Induan–Olenekian boundary or diagenesis? Albertiana, 2007c, vol. 35, pp. 41–45.

    Google Scholar 

  42. Isozaki, Y., Permo-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea, Science, 1997, vol. 276, pp. 235–238.

    Article  Google Scholar 

  43. Jenkyns, H.C., Gröcke, D.R., and Hesselbo, S.P., Nitrogen isotope evidence for mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event, Paleoceanography, 2001, vol. 16, pp. 593–603.

    Article  Google Scholar 

  44. Jia, C., Huang, J., Kershaw, S., and Luo, G., Microbial response to limited nutrients in shallow water immediately after the end-Permian mass extinction, Geobiology, 2012, vol. 10, pp. 60–71.

    Article  Google Scholar 

  45. Joachimski, M.M., Lai, X., and Shen, S., Climate warming in the latest Permian and the Permian–Triassic mass extinction, Geology, 2012, vol. 40, pp. 195–198.

    Article  Google Scholar 

  46. Joachimski, M.M., Alekseev, A.S., Grigoryan, A., and Gatovsky, Y.A., Siberian Trap volcanism, global warming and the Permian–Triassic mass extinction: New insights from Armenian Permian–Triassic sections, GSA Bulletin, 2020, vol. 132, pp. 427–443. https://doi.org/10.1130/B35108.1

    Article  Google Scholar 

  47. Junium, C.K. and Arthur, M.A., Nitrogen cycling during the Cretaceous, Cenomanian–Turonian Oceanic Anoxic Event II, Geochem. Geophys. Geosyst., 2007, vol. 8, pp. 1–18.

    Article  Google Scholar 

  48. Kaiho, K., Kajiwara, Y., Nakano, Y., Miura, Y., Chen, Z.Q., and Shi, G.R., End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle, Geology, 2001, vol. 29, pp. 815–818.

    Article  Google Scholar 

  49. Kaiho, K., Chen, Z.Q., and Sawda, K., Possible causes for a negative shift in the stable carbon isotope ratio before, during and after the end-Permian mass extinction in Meishan, South China, Austral. J. Earth Sci., 2009, vol. 56, pp. 799–808.

    Article  Google Scholar 

  50. Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H., Sigman, D., and Stahl, L., Dinitrogen fixation in the world’s oceans, Biogeochemistry, 2002, vol. 57/58, pp. 47–98.

    Article  Google Scholar 

  51. Kato, Y., Nakao, K., and Isozaki, Y., Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change, Chem. Geol., 2002, vol. 182, pp. 15–34.

    Article  Google Scholar 

  52. Knies, J., Grasby, S.E., Beuchamp, B., and Schubert, C.J., Water mass denitrification during the latest Permian extinction in the Sverdrup Basin, Arctic Canada, Geology, 2013, vol. 41, no. 2, pp. 167–170.

    Article  Google Scholar 

  53. Knoll, A.H., Bambach, R.K., Payne, J.L., Pruss, S., and Fischer, W.W., Palaeophysiology and end-Permian mass extinction, Earth Planet. Sci. Lett., 2007, vol. 256, pp. 295–313.

    Article  Google Scholar 

  54. Korostelev, V.I., Stratigrafiya triasovykh otlozhenii Vostochnogo Verkhoyan’ya (Stratigraphy of Triassic Deposits of the East Verkhoyansk Region), Yakutsk: Yakutsk. Kn. Izd., 1972 [in Russian].

  55. Korte, C. and Kozur, H.W., Carbon-isotope stratigraphy across the Permian–Triassic boundary: A review, J. Asian Earth Sci., 2010, vol. 39, pp. 215–235.

    Article  Google Scholar 

  56. Kozur, H.W. and Weems, R.E., Detailed correlation and age of continental late Changhsingian and earliest Triassic beds: Implications for the role of the Siberian Trap in the Permian–Triassic biotic crisis, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2011, vol. 308, pp. 22–40.

    Article  Google Scholar 

  57. Krasilov, V.A. and Zakharov, Yu.D., New find of Pleuromeia in the Lower Triassic of the Olenek River basin, Paleontol. Zh., 1975, no. 2, pp. 133–139.

  58. Krull, E.S., Retallack, G.J., Campbell, H.J., and Lyon, G.L., δ13Corg chemostratigraphy of the Permian–Triassic boundary in the Maitai Group, New Zealand: Evidence for high-latitudinal methane release, N.Z. J. Geol. Geophys., 2000, vol. 43, pp. 21–32.

    Article  Google Scholar 

  59. Kurushin, N.I. and Zakharov, V.A., Climate of the Northern Eurasia in the Triassic, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 1995, vol. 70, no. 3, pp. 55–60.

    Google Scholar 

  60. Lei, L.-D., Shen, J., Li, C., Algeo, T.J., Chen, Z.-Q., Feng, Q.-L., Cheng, M., Jin, C.-S., and Huang, J.-H., Controls on regional marine redox evolution during Permian–Triassic transition in South China, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2017, vol. 486, pp. 17–32.

    Article  Google Scholar 

  61. Lozovskii, V.R., The Permo–Triassic crisis and its possible causes, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2013, vol. 88, no. 1, pp. 49–58.

    Google Scholar 

  62. Luo, G., Wang, Y., and Kump, L.R., Enhanced nitrogen fixation in the immediate aftermath of the latest Permian marine mass extinction, Geology, 2011, vol. 39, no. 7, pp. 647–650.

    Article  Google Scholar 

  63. Lyons, T.W., Werne, G.P., Hollander, D.J., and Murray, R.W., Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela, Chem. Geol., 2003, vol. 195, pp. 131–157.

    Article  Google Scholar 

  64. Lyu, Z., Zhang, L., Algeo, T., Zhao, L., Chen, Z.-Q., Li, C., Ma, D., and Ye, F., Global-ocean circulation changes during the Smithian–Spathian transition inferred from carbon-sulfur cycle records, Earth-Sci. Rev., 2019. https://doi.org/10.1016/j.earscirev.201901.010

  65. Macias, D., Landry, M.R., and Gershunov, A., Miller AJ., and Franks P.J.S., Climate control of upwelling variability along the western North-American coast, PLoS ONE, 2012, vol. 7, no. 1. https://doi.org/10.1371/journal.pone.0030436

  66. Mogucheva, N.K., A new find of Middle Triassic flora in Eastern Siberia, in Stratigrafiya i paleontologiya Sibiri (Stratigraphy and Paleontology of Siberia), Novosibirsk: Sib. Nauchno-Issled. Inst. Geol. Geofiz. Miner. Syr’ya, 1981, pp. 43–48.

  67. Nakrem, H.A., Orchard, M., Weitschart, W., Hounslow, M.W., Beaity, T.W., and Mork, A., Triassic conodonts from Svalbard and the boreal correlations, Polar Res., 2008, vol. 27, no. 3, pp. 523–537.

    Article  Google Scholar 

  68. Nitrogen in the Marine Environment (2nd ed.), Capone, D.G., Bronk, D.A., Mulholland, M.R., and Carpenter, E.J., Eds., Amsterdam: Elsevier, 2008.

    Google Scholar 

  69. Parfenov, L.M. and Kuzmin, M.I., Tectonics, Geodynamics, and Metallogeny of the Sakha Republic (Yakutia), Moscow: MAIK “Nauka Interperiodica”, 2001.

  70. Quan, T.M. and Palkowski, P.G., Redox control of N : P ratios in aquatic ecosystems, Geobiology, 2008, vol. 7, pp. 124–139.

    Article  Google Scholar 

  71. Quan, T.M., Wright, J.D., and Palkowski, P.G., Co-variation of nitrogen isotopes and redox states through glacial-interglacial cycles in the Black Sea, Geochim. Cosmochim. Acta, 2013, vol. 112, pp. 305–320.

    Article  Google Scholar 

  72. Romano, C., Goudemand, N., Vennemann, T.W., Ware, D., Schneebeli-Hermann, E., and Hochuli, P.A., Climatic and biotic upheavals following the end-Permian mass extinction, Nat. Geosci., 2013, vol. 6, pp. 57–60.

    Article  Google Scholar 

  73. Sadovnikov, G.N., On the global stratotype section and point of the Triassic base, Stratigr. Geol. Correl., 2008, vol. 16, no. 1, pp. 31–46.

    Google Scholar 

  74. Sadovnikov, G.N., The Permian–Triassic transition in the Siberian Trap Province, Lethaea Rossica, 2015, vol. 2, pp. 241–246.

    Google Scholar 

  75. Sadovnikov, G.N., Evolution of the biome of the Middle Siberian Trappean Plateau, Paleontol. J., 2016, vol. 50, no. 5, pp. 518–532.

    Article  Google Scholar 

  76. Saitoh, M., Ueno, Y., Nishizawa, M., Isozaki, Y., Takai, K., Yao, J., and Ji, Z., Nitrogen isotope chemostratigraphy across the Permian–Triassic boundary at Chaotian, Sichuan, South China, J. Asian Earth Sci., 2014, vol. 93, pp. 113–128.

    Article  Google Scholar 

  77. Schobben, M., Joachimsky, M.M., Korn, D., Leda, L., and Korte, C., Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction, Gondwana Res., 2014, vol. 26, pp. 675–683.

    Article  Google Scholar 

  78. Schoepfer, S.D., Henderson, C.M., Garrison, G.H., and Ward, P.D., Cessation of productive coastal upwelling system in the Panthalassic Ocean at the Permian–Triassic boundary, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2012, vol. 313–314, pp. 181–188.

    Article  Google Scholar 

  79. Schoepfer, S.D., Henderson, C.M., Garrison, G.H., and Ward, P.D., Termination of a continent–margin upwelling system at the Permian–Triassic boundary (Opal Creek, Alberta, Canada), Global Planet. Change, 2013, vol. 105, pp. 21–35.

    Article  Google Scholar 

  80. Scotese, C.R., Atlas of Permo–Triassic Paleogeographic Maps (Mollweide Projection), in Maps 43–52, Volumes 3 & 4 of the PALEOMAP Atlas for ArcGIS, PALEOMAP Project, Evanston, 2014. https://doi.org/10.13140/2.1.2609.9209

  81. Sigman, D.M., Karsh, K.L., and Cas, K.L., Ocean Process Tracers: Nitrogen Isotopes in the Ocean. 2009. https://www. princeton.edu/sigman/publications/pdf/Sigma-Karsh-Casciotti-09.pdf.

  82. Song, H., Tong, J., Algeo, T.J., Horacek, M., Qiu, H., Tian, L., and Chen, Z.-Q., Large vertical δ12CDIC gradients in Early Triassic seas of the South China Craton: Implications for oceanographic changes related to Siberian Traps volcanism, Global Planet. Change, 2013, vol. 105, pp. 7–20.

    Article  Google Scholar 

  83. Stebbins, A., Algeo, T., Krystyn, L., Rowe, H., Brookfield, M., Williams, J., Nye, S.W., and Hannigan, R., Marine sulfur cycle evidence for upwelling and eutrophic stresses during Early Triassic cooling events, Earth-Sci. Rev., 2019, vol. 195, pp. 68–82.

    Article  Google Scholar 

  84. Sun, Y., Joachimski, M.M., Wignall, P.B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X., Lethally hot temperatures during the Early Triassic Greenhouse, Science, 2012, vol. 338, pp. 366–370.

    Article  Google Scholar 

  85. Sun, Y.D., Zulla, M.J., Joachimski, M.M., Bond, D.P.G., Wignall, P.B., and Zhang, Z.T., Ammonium ocean following the end-Permian mass extinction, Earth Planet. Sci. Lett., 2019, vol. 518, pp. 211–222.

    Article  Google Scholar 

  86. Takashi, S., Kaiho, K., Oba, M., and Kakegawa, T., A smooth negative shift of organic carbon isotope ratios at an end-Permian mass extinction horizon in central pelagic Panthalassa, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2010, vol. 292, pp. 532–539.

    Article  Google Scholar 

  87. Takashi, S., Kaiho, K., Kori, R.S., Hori, R.S., Gorjan, P., Watanabe, T., Yamakita, S., Aita, Y., Takemura, A., Spörl, K.B., Kakegawa, T., and Oba, M., Sulfur isotope profiles in the pelagic Panthalassic deep sea during the Permian–Triassic transition, Global Planet. Change, 2013. https://doi.org/10.1016/J.gloplacha.2012.12.006

  88. Tong, J., Zakharov, Y.D., Orchard, M.J., Yin, H., and Hansen, H.J., Proposal of Chaohu section as the GSSP candidate of the Induan–Olenekian boundary, Albertiana, 2004, no. 29, pp. 13–28.

  89. Tribovillard, N., Algeo, T.J., Lyons, T., and Riboulleau, A., Trace metals as paleoredox and paleoproductivity proxies: An update, Chem. Geol., 2006, vol. 232, pp. 12–32.

    Article  Google Scholar 

  90. Urey, H.C., Oxygen isotopes in nature and in the laboratory, Science, 1948, vol. 108, pp. 489–496.

    Article  Google Scholar 

  91. Wang, X., Panavsky, N.J., Hofmann, A., Saupe, E.E., De Corte, B.P., Philippot, P., LaLonde, S.V., Jemison, N.E., Zou, H., Ossa, F.O., Rybacki, K., Alfimova, N., Larson, M.J., Tsikos, H., Fralick, P.W., Johnson, T.M., Knudsen, A.C., Reinhard, C.T., and Konhauser, K.O., A Mesoarchean shift in uranium isotope systematics, Geochim. Cosmochim. Acta, 2018, vol. 238, pp. 438–452.

    Article  Google Scholar 

  92. Wierzbowski, H., Bajnai, D., Wacker, U., Rogov, M.A., Fiebig, J., and Tesakova, E.M., Clumped isotope record of salinity variations in the Subboreal Province at the Middle–Late Jurassic transition, Global Planet. Change, 2018, vol. 167, pp. 172–189.

    Article  Google Scholar 

  93. Wignal, P.B. and Hallam, A., Anoxia as a cause of the Permian–Triassic mass extinction: Facies evidence from Northern Italy and the Western United States, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1992, vol. 102, pp. 215–237.

    Google Scholar 

  94. Wignall, P.B. and Twitchet, R.J., Oceanic anoxia and the end-Permian mass extinction, Science, 1996, vol. 272, pp. 1155–1158.

    Article  Google Scholar 

  95. Wignall, P.B. and Twitchet, R.J., Extent, duration, and nature of the Permian–Triassic superanoxic event, Geol. Soc. Am. Spec. Pap., 2002, vol. 356, pp. 395–413.

    Google Scholar 

  96. Wignall, P.B., Bond, D.P.G., and Sun, Y., Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation, Geol. Mag., 2015, vol. 153, pp. 316–331.

    Article  Google Scholar 

  97. Yin, H. and Song, F.K., Mass extinction and Pangea integration during the Paleozoic–Mesozoic transition, Science China, Earth Sci., 2013, vol. 56, no. 1, pp. 1–13.

    Article  Google Scholar 

  98. Yin, H. and Zhang, K., Eventostratigraphy of the Permian–Triassic boundary at Meishan section, South China, in The Palaeozoic–Mesozoic Boundary (Candidates of Global Stratotype Section and Point of the Permian–Triassic Boundary)), Yin, H., Ed., Wuhan: China Univ. Geosci. Press, 1996, pp. 84–96.

    Google Scholar 

  99. Yin, H., Xie, S., Luo, G., Akgeo, T.J., and Zhang, K., Two episodes of environmental change at the Permian–Triassic boundary of the GSSP section Meishan, Earth-Sci. Rev., 2012, vol. 115, pp. 163–172.

    Article  Google Scholar 

  100. Zakharov, Yu.D., Otoceras of the Boreal Realm, Paleontol. Zh., 1971, no. 3, pp. 50–59.

  101. Zakharov, Yu.D., Ammonoid succession of Setorym River (Verkhoyansk area) and problem of Permian–Triassic boundary in Boreal realm, J. China Univ. Geosci., 2002, vol. 13, no. 2, pp. 107–123.

    Google Scholar 

  102. Zakharov, Yu.D., Naidin, D.P., and Teis R.V., The oxygen isotope composition in Early Triassic cephalopods of the Arctic Siberia and the salinity of boreal basins in the Early Mesozoic, Izv. Akad. Nauk SSSR. Ser. Geol., 1975, no. 4, pp. 101–113 [in Russian].

  103. Zakharov, Yu.D., Ukhaneva, N.G., Kiseleva, A.V., Kotlyar, G.V., Nikitina, A.P., Tazawa, J.-I., Gvozdev, V.I., Ignatyev, A.V., and Cherbadzhi, A.K., Geochemical signals as guidance for definition of the Middle–Upper Permian boundary in the South Kitakami (Japan) and Primorye Region (Russia), in Stratigraphy and Tectonic Evolution of Southeast Asia and South Pacific, Dheeradilok, P., Hinthong, C., Chaodumrong, P., , Eds., Bangkok: Dep. Miner. Resour., 1997, pp. 88–100.

    Google Scholar 

  104. Zakharov, Yu.D., Boriskina, N.G., Cherbadzhi, A.K., Popov, A.M., and Kotlyar, G.V., Main trends in Permo–Triassic shallow-water temperature changes: Evidence from oxygen isotope and Ca–Mg ratio data, Albertiana, 1999, vol. 23, pp. 11–22.

    Google Scholar 

  105. Zakharov, Yu.D., Ukhaneva, N.G., and Ignatyev, A.V., Latest Permian and Triassic carbonates of Russia: New palaeontological findings, stable isotopes, Ca–Mg ratio, and correlation, in Triassic Evolution of Tethys and Western Circum-Pacific, Yin, Y., Dickins, J.M., Shi, G.R., and Tong, J., Eds., Amsterdam: Elsevier, 2000, pp. 141–171.

    Google Scholar 

  106. Zakharov, Yu.D., Boriskina, N.G., and Popov, A.M., Rekonstruktsiya uslovii morskoi sredy pozdnego paleozoya i mezozoya po izotopnym dannym (na primere severa Evrazii) (Reconstruction of the Late Paleozoic and Mesozoic Marine Environments in the North Eurasia Based on Isotope Data), Vladivostok: Dal’nauka, 2001 [in Russian].

  107. Zakharov, Yu.D., Biakov, A.S., Baud, A., and Kozur, H., Significance of Caucasian sections for working out carbon-isotope standard for Upper Permian and Lower Triassic (Induan) and their correlation with the Permian of North-Eastern Russia, J. China Univ. Geosci., 2005, vol. 16, no. 2, pp. 141–151.

    Google Scholar 

  108. Zakharov, Yu.D., Popov, A.M., and Biakov, A.S., Late Permian to Middle Triassic palaeogeographic differentiation of key ammonoid groups: Evidence from the former USSR, Polar Res., 2008, vol. 27, no. 3, pp. 441–468.

    Article  Google Scholar 

  109. Zakharov, Yu.D., Sha, J.-G., Popov, A.M., Safronov, P.P., Shorochova, S.A., Volynets, E.B., Biakov, A.S., Burago, V.I., Zimina, V.G., and Konovalova, I.V., Permian to earliest Cretaceous climatic oscillations in the Eastern Asian continental margin (Sikhote-Alin area), as indicated by fossils and isotope data, GFF, 2009, vol. 131, pp. 25–47.

    Article  Google Scholar 

  110. Zakharov, Yu.D., Biakov, A.S., and Horacek, M., Global correlation of basal Triassic layers in the light of the first carbon isotope data on the Permian–Triassic boundary in Northeast Asia, Russ. J. Pac. Geol., 2014, vol. 8, no. 1, pp. 1–17.

    Article  Google Scholar 

  111. Zakharov, Yu.D., Biakov, A.S., Richoz, S., and Horacek, M., Importance of carbon isotopic data of the Permian–Triassic boundary layers in the Verkhoyansk Region for the global correlation of the basal Triassic layer, Dokl. Earth Sci., 2015, vol. 460, no. 1, pp. 1–5. https://doi.org/10.7868/S50869565215010235

    Article  Google Scholar 

  112. Zakharov, Yu.D., Dril, S.I., Shigeta, Y., Popov, A.M., Baraboshkin, A.M., Michailova, I.A., and Safronov, P.P., New aragonite 87Sr/86Sr records of Mesozoic ammonoids and approach to the problem of N, O, C and Sr isotope cycles in the evolution of the Earth, Sediment. Geol., 2018a, vol. 364, pp. 1–13.

    Article  Google Scholar 

  113. Zakharov, Yu.D., Horacek, M., Shigeta, Ya., Popov, A.M., and Bondarenko, L.G., N and C isotopic composition of the lower Triassic of southern Primorye and reconstruction of the habitat conditions of marine organisms, Stratigr. Geol. Correl., 2018b, vol. 26, no. 5, pp. 534–551.

    Article  Google Scholar 

  114. Zakharov, Yu.D., Horacek M., Shigeta, Ya., Popov, A.M., and Maekawa, T., N- and C isotopic composition of the lower Triassic of south Primorye and reconstruction of habitat conditions of marine organisms after end-Permian mass extinction at the end of the Permian, Dokl. Earth Sci., 2018c, vol. 478, no. 2, pp. 161–165.

    Article  Google Scholar 

  115. Zakharov, Y.D., Horacek, M., Popov, A.M., and Bondarenko, L.G., Nitrogen and carbon isotope data of Olenekian to Anisian deposits from Kamenushka, South Primorye, Far-Eastern Russia and their palaeoenvironmental significance, J. Earth Sci., 2018d, vol. 29, no. 4, pp. 837–853.

    Article  Google Scholar 

  116. Zakharov, Yu.D., Biakov, A.S., Horacek, M., Goryachev, N.A., and Vedernikov, I.L., The first data on the N isotopic composition of the Permian and Triassic of northeastern Russia and their significance for paleotemperature reconstructions, Dokl. Earth Sci., 2019, vol. 484, no. 1, pp. 21–24. https://doi.org/10.31857/50869-56524842187-190

    Article  Google Scholar 

  117. Zhang, G., Zhang, X., Hu, D., Li, D., Algeo, T., Farquhar, J., Henderson, C.V., Qin, L., Shen, D., Schoepfer, S.D., Chen, K., and Shen, Y., Redox chemistry changes in the Panthalassic ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recover, Proc. Nat. Acad. Sci. U.S.A., 2017, vol. 114, no. 8, pp. 1806–1810.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E. Riegler (HBLFA Francisco-Josephinum, BLT Wieselburg, Austria) for isotope analyses, B.G. Pokrovskii (Geological Institute of the Russian Academy of Sciences (RAS), Moscow), A.B. Kuznetsov (Institute of Precambrian Geology and Geochronology, RAS, St. Petersburg), T. Algeo (University of Cincinnati, USA), S. Grasby (Geological Survey of Canada, Calgary), S. Schoepfer (University of Washington, USA), Y.D. Sun (University of Erlangen-Nuremberg, Germany), and an anonymous reviewer for constructive criticism. We also acknowledge D. Bond (University of Hull, United Kingdom), R.V. Kutygin (Institute of Diamond and Precious Metal Geology, Siberian Branch of the RAS), E.S. Sobolev (Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the RAS, Novosibirsk), and V.G. Khomich (Far Eastern Geological Institute, Far Eastern Branch of the RAS, Vladivostok) for the consultations, and we thank M. Joachimski (University of Erlangen-Nuremberg, Germany), H. Wierzbowski (Polish Geological Institute, Warsaw), A. Baud (University of Lausanne), G.N. Sadovnikov (Russian State Geological Prospecting University, Moscow), and A.M. Popov (Far Eastern Geological Institute, Far Eastern Branch of the RAS, Vladivostok) for their help in searching for literature.

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 18-05-00023, 18-05-00191, and 20-05-00604), in part by the subsidy allocated to the Kazan Federal University, for the state assignment no. 671-2020-0049 in the sphere of scientific activity, and by the Ministry of Science and Higher Education of the Russian Federation (contract no. 14.Y26.31.0029) in the framework of the Resolution no. 220 of the Government of the Russian Federation. M. Horacek is grateful to the Austrian Academy of Sciences for the partial funding of conducting the research. This paper is a contribution to IGCP 630.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Zakharov.

Additional information

Reviewers: A.B. Kuznetsov and B.G. Pokrovskii

Translated by N. Astafiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, Y.D., Horacek, M. & Biakov, A.S. Variations in Nitrogen Isotope Composition in Clay Deposits of the Permian–Triassic Boundary Beds in the Verkhoyansk Region (Northeast Asia) and Their Implication for Reconstruction of Marine Environments. Stratigr. Geol. Correl. 29, 192–214 (2021). https://doi.org/10.1134/S0869593821020076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593821020076

Keywords:

Navigation