Skip to main content
Log in

Chip-compatible wide-field 3D nanoscopy through tunable spatial frequency shift effect

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Spatial frequency shift (SFS) microscopy with evanescent wave illumination shows intriguing advantages, including large field of view (FOV), high speed, and good modularity. However, a missing band in the spatial frequency domain hampers the SFS superresolution microscopy from achieving resolution better than 3 folds of the Abbe diffraction limit. Here, we propose a novel tunable large-SFS microscopy, making the resolution improvement of a linear system no longer restricted by the detection numerical aperture (NA). The complete wide-range detection in the spatial frequency domain is realized by tuning the illumination spatial frequency actively and broadly through an angle modulation between the azimuthal propagating directions of two evanescent waves. The vertical spatial frequency is tuned via a sectional saturation effect, and the reconstructed depth information can be added to the lateral superresolution mask for 3D imaging. A lateral resolution of λ/9, and a vertical localization precision of ∼λ/200 (detection objective NA = 0.9) are realized with a gallium phosphide (GaP) waveguide. Its unlimited resolution enhancing capability is demonstrated by introducing a designed metamaterial chip with an unusual large refractive index. Besides the great resolution enhancement, this method shows better anti-noise capability than classical structured illumination microscopy without SFS tunability. This method is chip-compatible and can potentially provide a mass-producible illumination chip module achieving the fast, large-FOV, and deep-subwavelength 3D nanoscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).

    Article  ADS  Google Scholar 

  2. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photon. 3, 144 (2009).

    Article  ADS  Google Scholar 

  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).

    Article  ADS  Google Scholar 

  4. X. Zhuang, Nat. Photon. 3, 365 (2009).

    Article  ADS  Google Scholar 

  5. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, Science 355, 606 (2017), arXiv: 1611.03401.

    Article  ADS  Google Scholar 

  6. Y. Eilers, H. Ta, K. C. Gwosch, F. Balzarotti, and S. W. Hell, Proc. Natl. Acad. Sci. USA 115, 6117 (2018).

    Article  ADS  Google Scholar 

  7. W. Yu, B. Guo, H. Zhang, J. Zhou, X. Yu, L. Zhu, D. Xue, W. Liu, X. Sun, and J. Qian, Sci. Bull. 64, 410 (2019).

    Article  Google Scholar 

  8. G. Zhao, C. Zheng, C. Kuang, R. Zhou, M. M. Kabir, K. C. Toussaint, W. Wang, L. Xu, H. Li, P. Xiu, and X. Liu, Phys. Rev. Lett. 120, 193901 (2018).

    Article  ADS  Google Scholar 

  9. C. Chen, F. Wang, S. Wen, Q. P. Su, M. C. L. Wu, Y. Liu, B. Wang, D. Li, X. Shan, M. Kianinia, I. Aharonovich, M. Toth, S. P. Jackson, P. Xi, and D. Jin, Nat. Commun. 9, 3290 (2018).

    Article  ADS  Google Scholar 

  10. M. Tang, X. Liu, Z. Wen, F. Lin, C. Meng, X. Liu, Y. Ma, and Q. Yang, Laser Photon. Rev. 14, 1900011 (2020).

    Article  ADS  Google Scholar 

  11. A. Classen, J. von Zanthier, M. O. Scully, and G. S. Agarwal, Optica 4, 580 (2017), arXiv: 1702.04319.

    Article  ADS  Google Scholar 

  12. L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, Nat. Methods 8, 1044 (2011).

    Article  Google Scholar 

  13. X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, Phys. Rev. Lett. 118, 076101 (2017).

    Article  ADS  Google Scholar 

  14. C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, Adv. Funct. Mater. 29, 1900126 (2019).

    Article  Google Scholar 

  15. H. S. Li, P. Fan, H. Xia, H. Peng, and G. L. Long, Sci. China-Phys. Mech. Astron. 63, 280311 (2020).

    Article  ADS  Google Scholar 

  16. T. Li, Sci. China-Phys. Mech. Astron. 63, 284231 (2020).

    Article  ADS  Google Scholar 

  17. Ø. I. Helle, F. T. Dullo, M. Lahrberg, J. C. Tinguely, O. G. Hellesø, and B. S. Ahluwalia, Nat. Photon. 14, 431 (2020), arXiv: 1903.05512.

    Article  ADS  Google Scholar 

  18. O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, Nat. Photon. 7, 247 (2013).

    Article  ADS  Google Scholar 

  19. X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, Nat. Photon. 12, 534 (2018), arXiv: 1809.09791.

    Article  ADS  Google Scholar 

  20. M. Tang, P. Xu, Z. Wen, X. Chen, C. Pang, X. Xu, C. Meng, X. Liu, H. Tian, N. Raghavan, and Q. Yang, Sci. Bull. 63, 1118 (2018).

    Article  Google Scholar 

  21. X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013).

    Article  ADS  Google Scholar 

  22. C. Pang, X. Liu, M. Zhuge, X. Liu, M. G. Somekh, Y. Zhao, D. Jin, W. Shen, H. Li, L. Wu, C. Wang, C. Kuang, and Q. Yang, Opt. Lett. 42, 4569 (2017).

    Article  ADS  Google Scholar 

  23. X. Zeng, Z. Liao, M. Al-Amri, and M. S. Zubairy, Phys. Rev. A 91, 063811 (2015).

    Article  ADS  Google Scholar 

  24. S. Cao, T. Wang, J. Yang, B. Hu, U. Levy, and W. Yu, Sci. Rep. 7, 1328 (2017).

    Article  ADS  Google Scholar 

  25. S. Cao, T. Wang, Q. Sun, B. Hu, U. Levy, and W. Yu, Opt. Express 25, 14494 (2017).

    Article  ADS  Google Scholar 

  26. F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, Nano Lett. 14, 4634 (2014).

    Article  ADS  Google Scholar 

  27. A. Bezryadina, J. Zhao, Y. Xia, X. Zhang, and Z. Liu, ACS Nano 12, 8248 (2018).

    Article  Google Scholar 

  28. D. E. Aspnes, and A. A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  ADS  Google Scholar 

  29. D. J. Wilson, K. Schneider, S. Hönl, M. Anderson, Y. Baumgartner, L. Czornomaz, T. J. Kippenberg, and P. Seidler, Nat. Photon. 14, 57 (2019), arXiv: 1808.03554.

    Article  ADS  Google Scholar 

  30. M. Anitei, and B. Hoflack, Nat. Cell Biol. 14, 11 (2012).

    Article  Google Scholar 

  31. Z. Chen, and S. L. Schmid, J. Cell Biol. 219, e202005126 (2020).

    Article  Google Scholar 

  32. J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, Proc. Natl. Acad. Sci. USA 111, 17164 (2014).

    Article  ADS  Google Scholar 

  33. Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y. H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, Nat. Commun. 9, 4818 (2018).

    Article  ADS  Google Scholar 

  34. R. Cao, Y. Chen, W. Liu, D. Zhu, C. Kuang, Y. Xu, and X. Liu, Biomed. Opt. Express 9, 5037 (2018).

    Article  Google Scholar 

  35. A. Lal, C. Shan, and P. Xi, IEEE J. Sel. Top. Quantum Electron. 22, 50 (2016), arXiv: 1602.06904.

    Article  ADS  Google Scholar 

  36. Q. Zhao, I. T. Young, and J. G. S. de Jong, J. Biomed. Opt. 16, 086007 (2011).

    Article  ADS  Google Scholar 

  37. M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, Quantum Eng. 1, e9 (2019).

    Article  Google Scholar 

  38. J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, Nat. Phys. 4, 810 (2008), arXiv: 0805.1367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Yang or Xu Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61735017, 61822510, 62020106002, 61905097, and 62005250), the Zhejiang Provincial Natural Science of China (Grant No. LR17F050002), and the Zhejiang University Education Foundation Global Partnership Fund. We thank Drs. Qiulan Liu, Ruizhi Cao, and Wenjie Liu for the discussion on the details of the superresolution imaging reconstruction.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Tang, M., Meng, C. et al. Chip-compatible wide-field 3D nanoscopy through tunable spatial frequency shift effect. Sci. China Phys. Mech. Astron. 64, 294211 (2021). https://doi.org/10.1007/s11433-020-1682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1682-1

PACS number(s)

Navigation