Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Statistical mechanics meets single-cell biology

Abstract

Single-cell omics is transforming our understanding of cell biology and disease, yet the systems-level analysis and interpretation of single-cell data faces many challenges. In this Perspective, we describe the impact that fundamental concepts from statistical mechanics, notably entropy, stochastic processes and critical phenomena, are having on single-cell data analysis. We further advocate the need for more bottom-up modelling of single-cell data and to embrace a statistical mechanics analysis paradigm to help attain a deeper understanding of single-cell systems biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Statistical mechanical modelling of state manifolds.
Fig. 2: Paradigms for estimating differentiation potency of single cells.
Fig. 3: Single-cell differentiation potency and molecular entropy.
Fig. 4: Critical phenomena in development and disease.

Similar content being viewed by others

References

  1. Feynman, R. P. Statistical Mechanics: A Set of Lectures (CRC Press, 2018).

  2. Landau, D. A. & Lifshitz, E. M. Statistical Physics, Vol. 5, 3rd edn (Elsevier, 1980).

  3. Scheffer, M. Complex systems: foreseeing tipping points. Nature 467, 411–412 (2010).

    CAS  PubMed  Google Scholar 

  4. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  PubMed  Google Scholar 

  5. Bryngelson, J. D. & Wolynes, P. G. Spin glasses and the statistical mechanics of protein folding. Proc. Natl Acad. Sci. USA 84, 7524–7528 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldstein, R. A., Luthey-Schulten, Z. A. & Wolynes, P. G. Optimal protein-folding codes from spin-glass theory. Proc. Natl Acad. Sci. USA 89, 4918–4922 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    CAS  PubMed  Google Scholar 

  8. Tang, F., Lao, K. & Surani, M. A. Development and applications of single-cell transcriptome analysis. Nat. Methods 8, S6–S11 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The human cell atlas: from vision to reality. Nature 550, 451–453 (2017).

    CAS  PubMed  Google Scholar 

  10. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. MacArthur, B. D. & Lemischka, I. R. Statistical mechanics of pluripotency. Cell 154, 484–489 (2013).

    CAS  PubMed  Google Scholar 

  12. Efroni, S., Melcer, S., Nissim-Rafinia, M. & Meshorer, E. Stem cells do play with dice: a statistical physics view of transcription. Cell Cycle 8, 43–48 (2009).

    CAS  PubMed  Google Scholar 

  13. Waddington, C. R. Principles of Development and Differentiation (Macmillan, 1966).

  14. Waddington, C. H. The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology (Allen and Unwin, 1957).

  15. Laurenti, E. & Gottgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410–427 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ladewig, J., Koch, P. & Brustle, O. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat. Rev. Mol. Cell Biol. 14, 225–236 (2013).

    CAS  PubMed  Google Scholar 

  18. Ferrell, J. E. Jr. Bistability, bifurcations, and Waddington’s epigenetic landscape. Curr. Biol. 22, R458–R466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, S., Guo, Y. P., May, G. & Enver, T. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol. 305, 695–713 (2007).

    CAS  PubMed  Google Scholar 

  20. Moris, N., Pina, C. & Arias, A. M. Transition states and cell fate decisions in epigenetic landscapes. Nat. Rev. Genet. 17, 693–703 (2016).

    CAS  PubMed  Google Scholar 

  21. Delbrueck, M. Unités biologiques doueés de continuité genetique. Colloq. Int. CNRS 8, 33–34 (1949).

    Google Scholar 

  22. Huang, S. The molecular and mathematical basis of Waddington’s epigenetic landscape: a framework for post-Darwinian biology? BioEssays 34, 149–157 (2012).

    CAS  PubMed  Google Scholar 

  23. Bessonnard, S. et al. Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development 141, 3637–3648 (2014).

    CAS  PubMed  Google Scholar 

  24. Messerschmidt, D. M. & Kemler, R. Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism. Dev. Biol. 344, 129–137 (2010).

    CAS  PubMed  Google Scholar 

  25. Fujikura, J. et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 16, 784–789 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F. D. & Klein, A. M. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 367, eaaw3381 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093–1095 (2013).

    CAS  PubMed  Google Scholar 

  28. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).

    CAS  PubMed  Google Scholar 

  29. Munsky, B., Neuert, G. & van Oudenaarden, A. Using gene expression noise to understand gene regulation. Science 336, 183–187 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).

    CAS  PubMed  Google Scholar 

  31. Eling, N., Morgan, M. D. & Marioni, J. C. Challenges in measuring and understanding biological noise. Nat. Rev. Genet. 20, 536–548 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dore, L. C. & Crispino, J. D. Transcription factor networks in erythroid cell and megakaryocyte development. Blood 118, 231–239 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, J. X., Aliyu, M. D., Aurell, E. & Huang, S. Quasi-potential landscape in complex multi-stable systems. J. R. Soc. Interface 9, 3539–3553 (2012).

    PubMed  PubMed Central  Google Scholar 

  34. Wang, J., Zhang, K., Xu, L. & Wang, E. Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl Acad. Sci. USA 108, 8257–8262 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lv, C., Li, X., Li, F. & Li, T. Constructing the energy landscape for genetic switching system driven by intrinsic noise. PLoS ONE 9, e88167 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Guo, J. & Zheng, J. HopLand: single-cell pseudotime recovery using continuous Hopfield network-based modeling of Waddington’s epigenetic landscape. Bioinformatics 33, i102–i109 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fard, A. T., Srihari, S., Mar, J. C. & Ragan, M. A. Not just a colourful metaphor: modelling the landscape of cellular development using Hopfield networks. NPJ Syst. Biol. Appl. 2, 16001 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, C. & Wang, J. Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths. PLoS Comput. Biol. 9, e1003165 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bonzanni, N. et al. Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model. Bioinformatics 29, i80–i88 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Krumsiek, J., Marr, C., Schroeder, T. & Theis, F. J. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS ONE 6, e22649 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, J., Xu, L., Wang, E. & Huang, S. The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation. Biophys. J. 99, 29–39 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Weinreb, C., Wolock, S., Tusi, B. K., Socolovsky, M. & Klein, A. M. Fundamental limits on dynamic inference from single-cell snapshots. Proc. Natl Acad. Sci. USA 115, E2467–E2476 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176, 928–943.e22 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).

    CAS  PubMed  Google Scholar 

  46. Stumpf, P. S. et al. Stem cell differentiation as a non-Markov stochastic process. Cell Syst. 5, 268–282 e267 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Herman, J. S., Sagar & Grun, D. FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat. Methods 15, 379–386 (2018).

    CAS  PubMed  Google Scholar 

  50. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    CAS  PubMed  Google Scholar 

  51. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Haghverdi, L., Buttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

    CAS  PubMed  Google Scholar 

  54. Coifman, R. R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl Acad. Sci. USA 102, 7426–7431 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 37, 451–460 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Villani, C. Optimal Transport, Old and New (Springer, 2008).

  57. Yanez, A. et al. Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes. Immunity 47, 890–902 e894 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Alemany, A., Florescu, M., Baron, C. S., Peterson-Maduro, J. & van Oudenaarden, A. Whole-organism clone tracing using single-cell sequencing. Nature 556, 108–112 (2018).

    CAS  PubMed  Google Scholar 

  59. Chan, M. M. et al. Molecular recording of mammalian embryogenesis. Nature 570, 77–82 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fischer, D. S. et al. Inferring population dynamics from single-cell RNA-sequencing time series data. Nat. Biotechnol. 37, 461–468 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. 25, 1491–1498 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Miao, Z. et al. Putative cell type discovery from single-cell gene expression data. Nat. Methods 17, 621–628 (2020).

    CAS  PubMed  Google Scholar 

  63. Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables rapid annotation of cell atlases. Nat. Methods 16, 983–986 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schiller, H. B. et al. The human lung cell atlas: a high-resolution reference map of the human lung in health and disease. Am. J. Respir. Cell Mol. Biol. 61, 31–41 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2018).

    Google Scholar 

  66. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Clauset, A., Newman, M. E. & Moore, C. Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004).

    Google Scholar 

  70. Newman, M. E. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006).

    CAS  Google Scholar 

  71. Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, P10008 (2008).

    Google Scholar 

  72. Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 74, 016110 (2006).

    Google Scholar 

  73. Kobak, D. & Berens, P. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 10, 5416 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Heinaniemi, M. et al. Gene-pair expression signatures reveal lineage control. Nat. Methods 10, 577–583 (2013).

    PubMed  PubMed Central  Google Scholar 

  75. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

    CAS  PubMed  Google Scholar 

  76. Yamanaka, S. & Blau, H. M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Moignard, V. et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33, 269–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5, e12776 (2010).

    PubMed  PubMed Central  Google Scholar 

  81. Schafer, J. & Strimmer, K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21, 754–764 (2005).

    PubMed  Google Scholar 

  82. Opgen-Rhein, R. & Strimmer, K. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol. 1, 37 (2007).

    PubMed  PubMed Central  Google Scholar 

  83. Margolin, A. A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 (Suppl. 1), S7 (2006).

    PubMed  PubMed Central  Google Scholar 

  84. Grun, D. Revealing dynamics of gene expression variability in cell state space. Nat. Methods 17, 45–49 (2020).

    PubMed  Google Scholar 

  85. Chen, S. & Mar, J. C. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinformatics 19, 232 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Oki, S. et al. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep. 19, e46255 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Consortium, G. T. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Google Scholar 

  88. Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 46, D252–D259 (2018).

    CAS  PubMed  Google Scholar 

  89. Kulakovskiy, I. V. et al. HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models. Nucleic Acids Res. 44, D116–125 (2016).

    CAS  PubMed  Google Scholar 

  90. Holland, C. H. et al. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol. 21, 36 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, N. & Teschendorff, A. E. Leveraging high-powered RNA-Seq datasets to improve inference of regulatory activity in single-cell RNA-Seq data. bioRxiv https://doi.org/10.1101/553040 (2019).

    Article  Google Scholar 

  92. Bargaje, R. et al. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells. Proc. Natl Acad. Sci. USA 114, 2271–2276 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mojtahedi, M. et al. Cell fate decision as high-dimensional critical state transition. PLoS Biol. 14, e2000640 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. Richard, A. et al. Single-cell-based analysis highlights a surge in cell-to-cell molecular variability preceding irreversible commitment in a differentiation process. PLoS Biol. 14, e1002585 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    CAS  PubMed  Google Scholar 

  96. Amit, D. J., Gutfreund, H. & Sompolinsky, H. Spin-glass models of neural networks. Phys. Rev. A 32, 1007–1017 (1985).

    CAS  Google Scholar 

  97. Kirkpatrick, S. & Sherrington, D. Infinite-ranged models of spin-glasses. Phys. Rev. B Condens. Matter 17, 4384–4403 (1978).

    CAS  Google Scholar 

  98. Wu, H. et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881 e868 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lang, A. H., Li, H., Collins, J. J. & Mehta, P. Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming genes. PLoS Comput. Biol. 10, e1003734 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Teschendorff, A. E. Avoiding common pitfalls in machine learning omic data science. Nat. Mater. 18, 422–427 (2019).

    CAS  PubMed  Google Scholar 

  101. Banerji, C. R. et al. Cellular network entropy as the energy potential in Waddington’s differentiation landscape. Sci. Rep. 3, 3039 (2013).

    PubMed  PubMed Central  Google Scholar 

  102. Teschendorff, A. E. & Enver, T. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat. Commun. 8, 15599 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Guo, M., Bao, E. L., Wagner, M., Whitsett, J. A. & Xu, Y. SLICE: determining cell differentiation and lineage based on single cell entropy. Nucleic Acids Res. 45, e54 (2016).

    PubMed Central  Google Scholar 

  104. Grun, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19, 266–277 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. van Wieringen, W. N. & van der Vaart, A. W. Statistical analysis of the cancer cell’s molecular entropy using high-throughput data. Bioinformatics 27, 556–563 (2011).

    PubMed  Google Scholar 

  106. West, J., Bianconi, G., Severini, S. & Teschendorff, A. E. Differential network entropy reveals cancer system hallmarks. Sci. Rep. 2, 802 (2012).

    PubMed  PubMed Central  Google Scholar 

  107. Teschendorff, A. E. & Severini, S. Increased entropy of signal transduction in the cancer metastasis phenotype. BMC Syst. Biol. 4, 104 (2010).

    PubMed  PubMed Central  Google Scholar 

  108. Jenkinson, G., Pujadas, E., Goutsias, J. & Feinberg, A. P. Potential energy landscapes identify the information-theoretic nature of the epigenome. Nat. Genet. 49, 719–729 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    CAS  PubMed  Google Scholar 

  110. Landau, D. A. et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26, 813–825 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zipori, D. The nature of stem cells: state rather than entity. Nat. Rev. Genet. 5, 873–878 (2004).

    CAS  PubMed  Google Scholar 

  112. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Efroni, S. et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2, 437–447 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Gaspar-Maia, A., Alajem, A., Meshorer, E. & Ramalho-Santos, M. Open chromatin in pluripotency and reprogramming. Nat. Rev. Mol. Cell Biol. 12, 36–47 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Meshorer, E. & Misteli, T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat. Rev. Mol. Cell Biol. 7, 540–546 (2006).

    CAS  PubMed  Google Scholar 

  116. Flouriot, G. et al. The basal level of gene expression associated with chromatin loosening shapes Waddington landscapes and controls cell differentiation. J. Mol. Biol. 432, 2253–2270 (2020).

    CAS  PubMed  Google Scholar 

  117. Cerami, E. G. et al. Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011).

    CAS  PubMed  Google Scholar 

  118. Rodchenkov, I. et al. Pathway Commons 2019 Update: integration, analysis and exploration of pathway data. Nucleic Acids Res. 48, D489–D497 (2020).

    CAS  PubMed  Google Scholar 

  119. Teschendorff, A. E., Banerji, C. R., Severini, S., Kuehn, R. & Sollich, P. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks. Sci. Rep. 5, 9646 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Barabasi, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    CAS  PubMed  Google Scholar 

  121. Barabasi, A. L. Scale-free networks: a decade and beyond. Science 325, 412–413 (2009).

    CAS  PubMed  Google Scholar 

  122. Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405–411 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Shi, J., Teschendorff, A. E., Chen, W., Chen, L. & Li, T. Quantifying Waddington’s epigenetic landscape: a comparison of single-cell potency measures. Brief Bioinformatics 21, 248–261 (2018).

    Google Scholar 

  124. Athanasiadis, E. I. et al. Single-cell RNA-sequencing uncovers transcriptional states and fate decisions in haematopoiesis. Nat. Commun. 8, 2045 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Macaulay, I. C. et al. Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep. 14, 966–977 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Flint, J. & Ideker, T. The great hairball gambit. PLoS Genet. 15, e1008519 (2019).

    PubMed  PubMed Central  Google Scholar 

  127. Pina, C. et al. Inferring rules of lineage commitment in haematopoiesis. Nat. Cell Biol. 14, 287–294 (2012).

    CAS  PubMed  Google Scholar 

  128. Jin, S., MacLean, A. L., Peng, T. & Nie, Q. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics 34, 2077–2086 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37, 382–390 (2005).

    CAS  PubMed  Google Scholar 

  130. Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019).

    CAS  PubMed  Google Scholar 

  131. Nguyen, Q. H. et al. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nat. Commun. 9, 2028 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tabar, V. & Studer, L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet. 15, 82–92 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  PubMed  Google Scholar 

  136. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tabula Muris, C. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Google Scholar 

  138. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen, W. et al. Single-cell landscape in mammary epithelium reveals bipotent-like cells associated with breast cancer risk and outcome. Commun. Biol. 2, 306 (2019).

    PubMed  PubMed Central  Google Scholar 

  140. Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).

    CAS  PubMed  Google Scholar 

  141. Halbritter, F. et al. Epigenomics and single-cell sequencing define a developmental hierarchy in Langerhans cell histiocytosis. Cancer Discov. 9, 1406–1421 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Guo, W. et al. Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips. Nat. Genet. 52, 908–918 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Domingues, A. F. et al. Loss of Kat2a enhances transcriptional noise and depletes acute myeloid leukemia stem-like cells. eLife 9, e51754 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

    CAS  PubMed  Google Scholar 

  145. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Hayashi, K., de Sousa Lopes, S. M. C., Tang, F., Lao, K. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008).

    CAS  PubMed  Google Scholar 

  147. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    PubMed  Google Scholar 

  149. Wang, L. et al. The phenotypes of proliferating glioblastoma cells reside on a single axis of variation. Cancer Discov. 9, 1708–1719 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Bose, I. & Pal, M. Criticality in cell differentiation. J. Biosci. 42, 683–693 (2017).

    PubMed  Google Scholar 

  151. Stanley, H. E. Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, 1971).

  152. Bandyopadhyay, S. et al. Rewiring of genetic networks in response to DNA damage. Science 330, 1385–1389 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Califano, A. Rewiring makes the difference. Mol. Syst. Biol. 7, 463 (2011).

    PubMed  PubMed Central  Google Scholar 

  154. Wang, R. et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492, 419–422 (2012).

    PubMed  Google Scholar 

  155. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    CAS  PubMed  Google Scholar 

  156. Chen, L., Liu, R., Liu, Z. P., Li, M. & Aihara, K. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep. 2, 342 (2012).

    PubMed  PubMed Central  Google Scholar 

  157. Gao, N. P., Gandrillon, O., Paldi, A., Herbach, U. & Gunawan, R. Universality of cell differentiation trajectories revealed by a reconstruction of transcriptional uncertainty landscapes from single-cell transcriptomic data. bioRxiv https://doi.org/10.1101/2020.04.23.056069 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Rulands, S. et al. Genome-scale oscillations in DNA methylation during exit from pluripotency. Cell Syst. 7, 63–76 e12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 13, 229–232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Teschendorff, A. E. et al. The dynamics of DNA methylation covariation patterns in carcinogenesis. PLoS Comput. Biol. 10, e1003709 (2014).

    PubMed  PubMed Central  Google Scholar 

  161. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Pujadas, E. & Feinberg, A. P. Regulated noise in the epigenetic landscape of development and disease. Cell 148, 1123–1131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Lee, D. S. et al. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nat. Methods 16, 999–1006 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    PubMed  Google Scholar 

  165. Luck, K. et al. A reference map of the human binary protein interactome. Nature 580, 402–408 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Guo, J., Lin, F., Zhang, X., Tanavde, V. & Zheng, J. NetLand: quantitative modeling and visualization of Waddington’s epigenetic landscape using probabilistic potential. Bioinformatics 33, 1583–1585 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang, X., Chong, K. H. & Zheng, J. A Monte Carlo method for in silico modeling and visualization of Waddington’s epigenetic landscape with intermediate details. Biosystems 198, 104275 (2020).

    CAS  PubMed  Google Scholar 

  168. Efremova, M. & Teichmann, S. A. Computational methods for single-cell omics across modalities. Nat. Methods 17, 14–17 (2020).

    CAS  PubMed  Google Scholar 

  169. Macaulay, I. C., Ponting, C. P. & Voet, T. Single-cell multiomics: multiple measurements from single cells. Trends Genet. 33, 155–168 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    CAS  PubMed  Google Scholar 

  171. Cherry, A. B. & Daley, G. Q. Reprogramming cellular identity for regenerative medicine. Cell 148, 1110–1122 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Huch, M., Knoblich, J. A., Lutolf, M. P. & Martinez-Arias, A. The hope and the hype of organoid research. Development 144, 938–941 (2017).

    CAS  PubMed  Google Scholar 

  173. Stein, D. L. & Newman, C.M. Spin Glasses and Complexity (Princeton University Press, 2013).

  174. Nitzan, M., Karaiskos, N., Friedman, N. & Rajewsky, N. Gene expression cartography. Nature 576, 132–137 (2019).

    CAS  PubMed  Google Scholar 

  175. Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhu, Q., Shah, S., Dries, R., Cai, L. & Yuan, G. C. Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. Nat. Biotechnol. 36, 1183–1190 (2018).

    CAS  Google Scholar 

  177. Giladi, A. et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629–637 (2020).

    CAS  PubMed  Google Scholar 

  178. Boisset, J. C. et al. Mapping the physical network of cellular interactions. Nat. Methods 15, 547–553 (2018).

    CAS  PubMed  Google Scholar 

  179. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    CAS  PubMed  Google Scholar 

  180. Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Chen, W. & Teschendorff, A. E. Estimating differentiation potency of single cells using single-cell entropy (SCENT). Methods Mol. Biol. 1935, 125–139 (2019).

    CAS  PubMed  Google Scholar 

  182. Gardiner, C. W. Handbook of Stochastic Methods, 2nd edn. (Springer, 1985).

  183. Shi, J., Li, T., Chen, L. & Aihara, K. Quantifying pluripotency landscape of cell differentiation from scRNA-seq data by continuous birth-death process. PLoS Comput. Biol. 15, e1007488 (2019).

    PubMed  PubMed Central  Google Scholar 

  184. Ting, D., Huang, L. & Jordan, M. An analysis of the convergence of graph Laplacians. arXiv https://doi.org/10.1101/2020.04.23.056069 (2011).

  185. Boltzmann, L. Lectures on Gas Theory (Univ. California, 1964).

  186. Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (Univ. Illinois Press, 1949).

Download references

Acknowledgements

A.E.T. is funded by the NSFC (grant numbers 31571359 and 31771464). A.P.F. is funded by grant DP1 DK119129 from the NIH.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to all aspects of the article.

Corresponding author

Correspondence to Andrew E. Teschendorff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks D. Grün and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bottom-up modelling

In the context of single-cell data, this refers to an analysis paradigm where one formulates an explicit dynamic (network) model to describe the data within each cell, often without the need to use data from other cells.

Cell-fate probabilities

Probabilities that cells will differentiate and give rise to progeny in a particular cell fate, and which can be estimated from a Markov chain description of single-cell dynamics.

Correlation length

A term used frequently in statistical mechanics to describe the strength of correlations between neighbouring microscopic elements (for example, atoms or molecules) in a system, and which typically decays with distance or time.

Differentiation potency hierarchy

The hierarchical arrangement of cell types according to the number of downstream cell types a given cell could give rise to during development or in a general differentiation process.

Dimensional reduction

A step in the analysis of big data, including single-cell RNA sequencing data, where by a lower-dimensional representation of the data is sought that can capture a high proportion of the variance in the data.

Dropout rate

This refers to the generally low sensitivity to detect gene expression in single-cell RNA sequencing assays, especially for genes expressed at a low number of molecules in a cell, resulting in potentially many zero expression values.

Dynamical systems theory

A branch of classical physics that describes the dynamics of multiple variables (for example, molecular concentrations) in terms of a set of linear or non-linear differential equations.

Entropy

A generic term to quantify the amount of uncertainty associated with a system or the outcome of some measurement.

Feature selection

In the context of single-cell RNA sequencing data analysis, this refers to a filtering step whereby all cells passing quality control are used to select genes according to some statistical criterion (for example, high variability across cells).

Functional cellular states

The states of the complex molecular network within a cell that determine its function, encoded by a multidimensional vector describing properties such as cell type, cell-cycle phase and metabolic state.

Functional pluripotency

A term used to characterize pluripotency at the level of a cell population, and which refers to the ability of this population to give rise to cellular progeny of each of the three main germ layers.

Gene count

The number of expressed genes (that is, the number of genes with non-zero expression values) in a cell, as derived from a single-cell RNA sequencing profile.

Global manifold

The complete state manifold encompassing all developmental stages and cell types within a given organism, to be distinguished from local state manifolds, which refer only to specific subparts.

Hubs

Nodes within a network that possess an abnormally high number of neighbours. They define outliers in the degree distribution, and are a key feature of real biological networks, including protein–protein interaction networks.

Infinite-range spin glasses

Spin glasses where interactions can occur over very long distances encompassing the whole system.

Ising spin model

A special case of a spin glass where interactions are localized to nearest neighbours and where the state space of each particle is only two-dimensional.

Least action principle

A variational principle derived from classical dynamics where the dynamics of the system can be derived from the minimization of an energy function.

Lineage trajectories

One-dimensional trajectories in a high-dimensional phase space describing the dynamics of a cell, but often depicted graphically in a low-dimensional reduced space.

Macrostate

A macroscopic observable of a system. Examples include electrical conductivity of a material and the number of animals within an ecosystem.

Markov chain

A Markov process on a finite discrete state space (often a graph), defined by a probability matrix that describes the probabilities of transition between connecting states (in the graph context, these are the nodes).

Markov process

A memoryless stochastic process where the state of the system (for example, a cell) at any given timepoint is determined only by its immediately previous state.

Mass-action principle

A physical law which states that the probability (rate) of a molecular interaction (reaction) is proportional to the product of the concentrations of each molecule (reactant).

Metastable

In the context of attractors, it refers to locally stable states, which, however, are not stable under higher-energy perturbations. Their stability is therefore often only transient.

Microstate

The instantaneous and dynamic state that each microscopic constituent of the system is in, and which is generally unobserved. Examples include the speed and direction at which each air molecule moves and the electrical activity of each neuron in a brain.

Multifurcations

A higher-order generalization of a bifurcation, whereby a cell lineage describing a multipotent state splits or branches out into three or more daughter lineages.

Multilineage priming

In a cell population, this refers to the existence of cells primed or restricted to differentiate into one of many downstream lineages.

Occam’s razor

Also called the ‘law of parsimony’, it is a principle stated by the philosopher William of Ockham (1285–1347) that gives precedence to simplicity: of two competing theories, the simpler explanation of an entity is to be preferred.

Optimal transport

(OT). A branch of mathematics that deals with optimizing the cost of transporting a distribution of mass (for example, cells) between two successive locations, and which is amenable to solution via numerical programming.

Order parameters

Parameters of a statistical mechanical model, whereby varying a parameter can lead to transitions between different low-energy states.

Phase space

An abstract space (usually high-dimensional) in which each point corresponds to a functional cellular state, with the dynamics of a cell’s state describing a one-dimensional trajectory in this space.

Phase transitions

Abrupt, discontinuous changes in the macroscopic properties of a system, often as a result of energy exchange with the environment, and driven by changes in the microscopic interaction patterns.

Potential energy

A term associated with the Waddington landscape, representing the elevation and correlating with developmental potential, in analogy with the physical potential energy associated with the elevation in geophysical landscapes.

Pseudotime

A temporal variable computed for each cell along a lineage trajectory measuring the differentiation time from a given root state. It correlates with experimental differentiation stage and differentiation potency but is also distinct.

Quasi-potential

The name given to the scalar function obtained by solving sets of non-linear differential equations describing the dynamics of transcription factor concentrations, and which approximates developmental potential.

Random walks

Stochastic Markov processes on a finite discrete state space, often represented as nodes on a network or graph, and describing a trajectory along nodes, with transitions between nodes following a specific probability distribution.

Regulatory network motifs

Topological regulatory interaction patterns involving activation and/or inhibition between transcription factors, as specified in a gene regulatory network.

Root states

In the context of inferring lineage trajectories from single-cell RNA sequencing data, a root state refers to the cell (or cluster of cells) where the trajectory starts, and which needs to be assigned before trajectories can be inferred.

Saddle-node bifurcations

Dynamical bifurcations associated with the emergence of unstable ‘saddle-node’ states in phase space, often termed ‘tipping points’, and which have been proposed to describe the transitions to disease states.

Scale-free

When pertaining to networks, scale-free describes a type of network where the probability of finding a node with n neighbours decays according to a power law in n (that is, it decays more slowly than an exponential function). The implication is that such networks contain network hubs.

Spin glass

A statistical mechanical model used to describe disordered physical systems composed of many interacting particles in a high-dimensional state space and characterized by a high number of equivalent low-energy states.

State convergence

The existence of two or more distinct paths or cellular lineage trajectories by which the same end point (that is, terminal cell state) can be reached.

State manifold

A generalization of Waddington’s landscape providing a more realistic geometric representation of functional cellular states and of the single-cell dynamics connecting these states.

Statistical mechanics

A discipline of physics which broadly speaking aims to describe macroscopic observables of a general system in terms of the properties of its microscopic constituents, including their interactions.

Stochastic process

‘Stochastic’ refers to our inability to predict with certainty the value that some variable would take if observed. This randomness can be due to incomplete knowledge or can be inherent/intrinsic to the system. A stochastic process describes multiple observations of a stochastic variable, often in time, or in some more abstract temporal space.

TF regulons

A regulon for a given transcription factor (TF) consists of a set of direct (and possibly also indirect) targets of the TF and whose average gene expression provides a faithful measure of the TF’s regulatory activity.

Top-down modelling

In the context of single-cell data, this refers to an analysis paradigm where one analyses the data from many cells together to infer properties of individual cells.

Velocity field

In the context of single-cell RNA sequencing data, a low-dimensional static graphical representation of cell dynamics in which the future transcriptomic state of each cell is indicated by an arrow pointing away from the cell.

Waddington epigenetic landscapes

Three-dimensional representations of cellular development, with differentiation trajectories and cell states described by bifurcating valleys and local basins, and with the elevation in the landscape describing developmental potential.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teschendorff, A.E., Feinberg, A.P. Statistical mechanics meets single-cell biology. Nat Rev Genet 22, 459–476 (2021). https://doi.org/10.1038/s41576-021-00341-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-021-00341-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing