Skip to main content
Log in

Ontology, Set Theory, and the Paraphrase Challenge

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

In many ontological debates there is a familiar challenge. Consider a debate over X s. The “small” or anti-X side tries to show that they can paraphrase the pro-X or “big” side’s claims without any loss of expressive power. Typically though, when the big side adds whatever resources the small side used in their paraphrase, the symmetry breaks down. The big side plus small’s resources is a more expressively powerful and thus more theoretically fruitful theory. In this paper, I show that there is a very general solution to this problem, for the small side. Assuming the resources of set theory, small can successfully paraphrase big. This result depends on a theorem about models of set theory with urelements. After proving this theorem, I discuss some of its philosophical ramifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, K. (2009). Composition, Colocation, and Metaontology. In Chalmers, M., & Wasserman (Eds.) Metametaphysics (pp. 38–76). Oxford: Oxford University Press.

  2. Bernays, P. (1954). A system of axiomatic set theory VII. Journal of Symbolic Logic, 19, 81–96.

    Article  Google Scholar 

  3. Boolos, G. (1984). To be is to be the value of a variable (or some value of some variables). Journal of Philosophy, 81, 430–449.

    Article  Google Scholar 

  4. Boolos, G. (1985). Nominalist platonism. Philosophical Review, 94, 327–344.

    Article  Google Scholar 

  5. Bunt, H.C. (1985). Mass terms and model-theoretic semantics. Cambridge: Cambridge University Press.

    Google Scholar 

  6. Chihara, C.S. (1990). Constructibility and mathematical existence. Oxford: Clarendon Press.

    Google Scholar 

  7. Eklund, M. (2008). The picture of reality as an amorphous lump. In Contemporary Debates in Metaphysics: Blackwell Publishing.

  8. Eklund, M. (2009). Carnap and Ontological Pluralism. In Metametaphysics: New essays on the foundations of ontology. Oxford: Oxford University Press.

  9. Gödel, K. (1931). Ü Formal unentscheidbare sätze der Principia Mathematica und verwandter Systeme I. Montashefte für Mathematik und Physik, 38, 173–198.

    Article  Google Scholar 

  10. Gödel, K. (1939). Consistency-Proof For the generalized Continuum-Hypothesis. Proceedings of the National Academy of Sciences 25.

  11. Hawthorne, J. (2006). Plenitude, Convention, and Ontology. In Metaphysical Essays. Oxford: Oxford University Press.

  12. Hellman, G. (1989). Mathematics without numbers: Towards a modal-structural interpretation. Oxford: Clarendon Press.

    Google Scholar 

  13. Hilbert, D., & Bernays, P. (1939). Grundlagen der Mathmatik Volume II. Berlin: Springer.

    Google Scholar 

  14. Hirsch, E., & Warren, J. (2019). Quantifier variance and the demand for a semantics. Philosophy and Phenomenological Research, 98(3), 592–605.

    Article  Google Scholar 

  15. Jech, T. (1973). The axiom of choice. Amsterdam: North-Holland.

    Google Scholar 

  16. Jech, T. (2003). Set theory: The third millennium edition, revised and expanded. New York: Springer.

    Google Scholar 

  17. Kunen, K. (1980). Set theory: An introduction to independence proofs. Amsterdam: Elsevier.

    Google Scholar 

  18. Lewis, D. (1991). Parts of classes. Oxford: Basil Blackwell.

    Google Scholar 

  19. Löwe, B. (2006). Set theory with and without urelements and categories of interpretations. Notre Dame Journal of Formal Logic, 47(1), 83–91.

    Article  Google Scholar 

  20. McGee, V. (1997). How we learn mathematical language. Philosophical Review, 106(1), 35–68.

    Article  Google Scholar 

  21. McKay, T.J. (2006). Plural predication. Oxford: Clarendon Press.

    Book  Google Scholar 

  22. Oliver, A., & Smiley, T. (2016). Plural logic: 2nd edn, Revised and expanded. Oxford: Oxford University Press.

    Book  Google Scholar 

  23. Rayo, A. (2006). Beyond plurals. In Rayo, & Uzquiano (Eds.) Absolute Generality (pp. 220–254). Oxford: Oxford University Press.

  24. Rieger, L. (1957). A Contribution to gödel’s Axiomatic Set Theory. Czechoslovak Mathematical Journal, 7, 323–357.

    Article  Google Scholar 

  25. Russell, J.S. (2016). Indefinite divisibility. Inquiry, 59(3), 239–263.

    Article  Google Scholar 

  26. Tarski, A., Andrzej, M., & Raphael, R. (1953). Undecidable theories. Amsterdam: North Holland.

    Google Scholar 

  27. Uzquiano, G. (2004). Plurals and simples. The Monist, 87, 429–451.

    Article  Google Scholar 

  28. Uzquiano, G. (2006). Unrestricted unrestricted quantification: The cardinal problem of absolute generality. In Rayo, & Uzquiano (Eds.) Absolute generality. Oxford: Clarendon Press.

  29. van Inwagen, P. (1990). Material beings. Ithaca: Cornell University Press.

    Google Scholar 

  30. Warren, J. (2015). Quantifier variance and the collapse argument. Philosophical Quarterly, 65(259), 241–253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared Warren.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren, J. Ontology, Set Theory, and the Paraphrase Challenge. J Philos Logic 50, 1231–1248 (2021). https://doi.org/10.1007/s10992-021-09597-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-021-09597-6

Keywords

Navigation