Skip to main content
Log in

Optimization of a microfluidic process to encapsulate isocyanate for autoreactive and ecological adhesives

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present paper reports a continuous microfluidic approach for the preparation of microcapsules (MCs), by interfacial polymerization, with a polyurea/polyurethane (PUa/PU) shell containing isophorone diisocyanate (IPDI). The microfluidic system enables the formation of a monodisperse oil-in-water (O/W) emulsion by a separate flow of the reagents along the tubing system, which posteriorly meet at a cross-junction, resulting in the precise formation of one emulsion droplet at a time. The developed MCs are intended to be part of a new monocomponent, autoreactive and ecological adhesive, as cross-linking agents. Critical operational parameters in the microfluidic process were investigated, namely the flow rate of the emulsion phases, the cross-junction’s configuration and its correlation with the MCs’ morphology, average diameter, size distribution and amount of encapsulated isocyanate. The advances achieved in the current study represent a contribution to the development of new sustainable and eco-friendly products, where the employment of monodisperse MCs is an advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Szycher M (2013) Szycher’s handbook of polyurethanes. CRC Press, 2nd Edition, Boca Raton

  2. Ma Y, Jiang Y, Tan H, Zhang Y, Gu J (2017) A rapid and efficient route to preparation of isocyanate microcapsules. Polymers 9:274. https://doi.org/10.3390/polym9070274

    Article  CAS  PubMed Central  Google Scholar 

  3. Bello D, Herrick CA, Smith TJ, Woskie SR, Streicher RP, Cullen MR, Liu Y, Redlich CA (2007) Skin exposure to isocyanates: reasons for concern. Environ Health Perspect 115:328–335. https://doi.org/10.1289/ehp.9557

    Article  CAS  PubMed  Google Scholar 

  4. Arán-Ais F, Pérez-Limiñana MÁ, Sánchez-Navarro MM, Orgilés-Barceló C (2012) Developments in microencapsulation technology to improve adhesive formulations. J Adhesm 88:391–405. https://doi.org/10.1080/00218464.2012.660368

    Article  CAS  Google Scholar 

  5. Salaün F (2016) Microencapsulation technology for smart textile coatings. In: Hu J (ed) Active coatings for smart textiles, woodhead publishing series in textiles. Elsevier, Amsterdam

    Google Scholar 

  6. Jeoffroy E, Demirörs AF, Schwendimann P, Santos SD, Danzi S, Hauser A, Partl MN, Studart AR (2017) One-step bulk fabrication of polymer-based microcapsules with hard-soft bilayer thick shells. ACS Appl Mater Interfaces 9:37364–37373. https://doi.org/10.1021/acsami.7b09371

    Article  CAS  PubMed  Google Scholar 

  7. Azizi N, Ladhari N, Majdoub M (2011) Elaboration and Characterization of Polyurethane-based microcapsules: application in textile. Asian J Text 1:130–137. https://doi.org/10.3923/ajt.2011.130.137

    Article  Google Scholar 

  8. Polenz I, Brosseau Q, Baret JC (2015) Monitoring reactive microencapsulation dynamics using microfluidics. Soft Matter 11:2916–2923. https://doi.org/10.1039/c5sm00218d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hennequin Y, Pannacci N, Torres CP, Tetradis-Meris G, Chapuliot S, Bouchaud E, Tabeling P (2009) Synthesizing microcapsules with controlled geometrical and mechanical properties with microfluidic double emulsion technology. Langmuir 25:7857–7861. https://doi.org/10.1021/la9004449

    Article  CAS  PubMed  Google Scholar 

  10. Shah RK, Kim J-W, Agresti JJ, Weitz AD, Chu L-Y (2008) Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter 4:2303–2309. https://doi.org/10.1039/B808653M

    Article  CAS  Google Scholar 

  11. Mavrogiannis N, Ibo M, Fu X, Crivellari F, Gagnon Z (2016) Microfluidics made easy: a robust low-cost constant pressure flow controller for engineers and cell biologists. Biomicrofluidics 10:034107. https://doi.org/10.1063/1.4950753

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu JH, Li SW, Tan J, Luo GS (2008) Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid Nanofluidics 5:711–717. https://doi.org/10.1007/s10404-008-0306-4

    Article  CAS  Google Scholar 

  13. Loizou K, Wong V-L, Hewakandamby B (2018) Examining the effect of flow rate ratio on droplet generation and regime transition in a microfluidic t-junction at constant capillary numbers. Inventions 3:54. https://doi.org/10.3390/inventions3030054

    Article  Google Scholar 

  14. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction: scaling and mechanism of break-up. Lab Chip 6:437–446. https://doi.org/10.1039/b510841a

    Article  CAS  PubMed  Google Scholar 

  15. Costa M, Dias JP, Pinho I, Loureiro MV, Marques AC, Simões R (2020) Development of a microfluidic device to encapsulate isocyanate for autoreactive and ecological adhesives. IOP Conf Series Mater Sci Eng 520:012007. https://doi.org/10.1088/1757-899X/520/1/012007

    Article  Google Scholar 

  16. Attaei M, Loureiro MV, Vale MD, Condeço JAD, Pinho I, Bordado JC, Marques AC (2018) Isophorone diisocyanate (IPDI) microencapsulation for mono-component adhesives: effect of the active H and NCO sources. Polymers 10:825. https://doi.org/10.3390/polym10080825

    Article  CAS  PubMed Central  Google Scholar 

  17. Loureiro MV, Attaei M, Rocha S, Vale M, Bordado AC, Simões R, Pinho I, Marques AC (2020) The role played by different active hydrogen sources in the microencapsulation of a commercial oligomeric diisocyanate. J Mater Sci 55:4607–4623. https://doi.org/10.1007/s10853-019-04301-1

    Article  CAS  Google Scholar 

  18. Gerven VT, Moors J, Dutré V, Vandecasteele C (2004) Effect of CO2 leaching from a cement-stabilized MSWI fly ash. Cem Concr Res 34:1103–1109. https://doi.org/10.1016/j.cemconres.2003.11.022

    Article  CAS  Google Scholar 

  19. Evans R M (1993) Polyurethane sealants: technology and applications. CRC Press 1st Edition, Basel

  20. Hano N, Takafuji M, Ihara H (2017) One-pot preparation of polymer microspheres having wrinkled hard surfaces through self-assembly of silica nanoparticles. ChemComm 53:9147–9150. https://doi.org/10.1039/c7cc05132h

    Article  CAS  Google Scholar 

  21. Kardar P (2015) Preparation of polyurethane microcapsules with different polyols component for encapsulation of isophorone diisocyanate healing agent. Prog Org Coat 89:271–276. https://doi.org/10.1016/j.porgcoat.2015.09.009

    Article  CAS  Google Scholar 

  22. Yang J, Keller MW, Moore JS, White SR, Sottos NR (2008) Microencapsulation of isocyanates for self-healing polymers. Macromolecules 41:9650–9655. https://doi.org/10.1021/ma801718v

    Article  CAS  Google Scholar 

  23. Finken R, Kessler S, Seifert U (2011) Micro-capsules in shear flow. J Phys Condens Matter 23:184113. https://doi.org/10.1088/0953-8984/23/18/184113

    Article  CAS  PubMed  Google Scholar 

  24. Quevedo E, Steinbacher J, McQuade DT (2005) Interfacial polymerization within a simplified microfluidic device: capturing capsules. J Am Chem Soc. https://doi.org/10.1021/ja0529945

    Article  PubMed  Google Scholar 

  25. Loizou K, Thielemans W, Hewakandamby B N (2013) Effect of geometry on droplet generation in a microfluidic T-junction. Proceedings of the ASME 2013 fluids engineering division summer meeting, Incline Village, Nevada, USA

  26. Ming Y, Hu J, Xing J, Wu M, Qu J (2016) Preparation of polyurea/melamine formaldehyde double-layered self-healing microcapsules and investigation on core fraction. J Microencapsul 33:307–314

    Article  CAS  Google Scholar 

  27. Lapierre F, Wu N, Zhu Y (2011) Influence of flow rate on the droplet generation process in a microfluidic chip. Smart Nano-Micro Mater Devices. https://doi.org/10.1117/12.903271

    Article  Google Scholar 

  28. Ngo I-L, Joo SW, Byon C (2016) Effects of junction angle and viscosity ratio on droplet formation in microfluidic cross-junction. J Fluids Eng 138:051202–051211. https://doi.org/10.1115/1.4031881

    Article  CAS  Google Scholar 

  29. Jamalabadi MYA, DaqiqShirazi M, Kosar A, Shadloo MS (2017) Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction. Theor App Mech Lett 7:243–251

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by FEDER funds through the COMPETE 2020 program and the Regional Operational Program of Lisbon—LISBOA2020, in the scope of the Portugal2020 Project 17930, “ECOBOND—Development of new ecological, self-reactive, monocomponent adhesives.” The authors would also like to thank the support by the Portuguese Foundation for Science and Technology (FCT), to CERENA (Strategic project FCT-UID/ECI/04028/2019 and FCT-UIDB/04028/2020) and IPC (Strategic project UIDB/05256/2020 and UIDP/05256/2020) and PhD Grant SFRH/BD/140700/2018 (Mónica V. Loureiro). The authors would like to thank M. Borges, M. Osório and P. Dias for their contribution in this work.

Funding

This research was funded by the European Community Fund FEDER through the COMPETE 2020 program and the Regional Operational Program of Lisbon—LISBOA2020, in the scope of the Portugal2020 Project 17930, “ECOBOND—Development of new ecological, self-reactive, monocomponent adhesives.” In addition, Fundacão para a Ciência e a Tecnologia (FCT) through the support of CERENA (FCT-UID/ECI/04028/2019 and FCT-UIDB/04028/2020), IPC (UIDB/05256/2020 and UIDP/05256/2020), and the Grant SFRH/BD/140700/2018 (M.V.L.). The funders were not involved in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Simoes.

Ethics declarations

Conflict of interest

The author declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, M., Pinho, I., Loureiro, M.V. et al. Optimization of a microfluidic process to encapsulate isocyanate for autoreactive and ecological adhesives. Polym. Bull. 79, 3951–3970 (2022). https://doi.org/10.1007/s00289-021-03690-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03690-1

Keywords

Navigation