Skip to main content
Log in

Switched-Beam Graphene Plasmonic Nanoantenna in the Terahertz Wave Region

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract 

Large-distance communications beyond a few meters is challenging for Terahertz (THz) signals because of high spreading loss and absorption in the media. The smart antenna concept used for RF antennas to improve the signal-to-interference/noise level can be extended to these THz antennas. Out of the two types of implementations of this concept, viz. (i) adaptive array and (ii) switched-beam antenna, this paper presents the switched-beam nanoantenna for the THz wave region. Based on the Yagi-Uda antenna concept, switched-beam graphene nanoantennas over silicon dioxide (SiO2) substrate is proposed in this paper. In one case (Antenna-I), the antenna is able to switch the beam in ± 90º directions, whereas in the other case (Antenna-II), the switching directions are 0º, ± 90º, 180º. This pattern reconfigurability can also be observed over a frequency range leading to simultaneous pattern and frequency reconfigurable nature of the nanoantenna. The reconfigurability is obtained by changing the graphene conductivity through its chemical potential. Due to plasmonic wave propagation in graphene at THz, the proposed graphene nanoantenna resonates at a sub-wavelength scale. Design aspects and the working principle of switched-beam graphene plasmonic nanoantennas in the THz region are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cherry S (2004) Edholm’s law of bandwidth: telecommunications data rates are as predictable as Moore’s law. IEEE Spectr 41(7):58–60

    Article  Google Scholar 

  2. Koch M (2007) Terahertz frequency detection and identification of materials and object, Nano Science for Peace and Security Series- B. Physics and Biophysics, edited by R. E Miles, X. C. Zhang, H. Eisele, and A. Krotkus, (Springer Science and Business Media, Dordrecht, Netherland), 325-338

  3. Akyildiz IF, Jornet JM, Han C (2014) Terahertz band: next frontier for wireless communications. Physical Communication 12:16–32

    Article  Google Scholar 

  4. Jornet JM, Akyildiz IF (2011) Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wireless Commun 10(10):3211–3221

    Article  Google Scholar 

  5. Tse D, Viswanath P (2005) Fundamentals of wireless communication. Cambridge Univ. Press, Cambridge, U.K.

    Book  Google Scholar 

  6. Costantine BJ, Tawk Y, Barbin SE, Christodoulou CG (2015) Reconfigurable antennas: design and applications. Proc IEEE 103(3):424–437

    Article  Google Scholar 

  7. Dash S, Patnaik A (2017) Material selection for THz antennas. Microw Opt Technol Lett 60(5):1183–1187

    Article  Google Scholar 

  8. Dash S, Patnaik A (2018) Performance of graphene plasmonic antenna in comparison with their counterparts for low-Terahertz applications. Plasmonics 13(6):2353–2360

    Article  CAS  Google Scholar 

  9. Jablan M, Buljan H, Soljacic M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435

    Article  Google Scholar 

  10. Iqbal T, Bibi S, Bashir A, Afsheen S (2021) Efficient excitation of novel graphene plasmons using grating coupling. Appl Nanosci

  11. Iqbal T, Afsheen S (2016) Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under- and over-millinG. Plasmonics 11:1247–1256

    Article  CAS  Google Scholar 

  12. Iqbal T (2018) Efficient excitation and amplification of the surface plasmons. Curr Appl Phys 18(11):1381–1387

    Article  Google Scholar 

  13. Chen J et al (2019) Photonic microcavity-enhanced magnetic plasmon resonance of metamaterials for sensing applications. IEEE Photonics Technol Lett 31(2):113–116

    Article  CAS  Google Scholar 

  14. Chen J et al (2019) Highly sensitive refractive-index sensor based on strong magnetic resonance in metamaterials. Appl Phys Express 12(5):052015

    Article  CAS  Google Scholar 

  15. Chen J, Yang C, Gu P, Kuang Y, Tang C, Chen S, Liu Z (2021) High sensing properties of magnetic plasmon resonance by strong coupling in three-dimensional metamaterials. J Light wave Technol 39:562–565

    Article  CAS  Google Scholar 

  16. Dash S, Patnaik A (2018) Graphene plasmonic bowtie antenna for UWB THz application. IEEE 24th National Conference on Communications (NCC) 2018, Hyderabad, India, 1–4

  17. Ullah Z, Witjaksono G, Nawi I, Tansu N, Khattak MI, Junaid M (2020) A review on the development of tunable graphene nanoantennas for terahertz optoelectronic and plasmonic applications. Sensors 20(5):1401

    Article  CAS  Google Scholar 

  18. Dash S, Patnaik A (2017) Dual-band reconfigurable plasmonic antenna using bilayer graphene. Proc. of IEEE International Symposium on Antennas and Propagation AP-S 2017, 921–922

  19. Tamagnone M, Gómez-Díaz JS, Mosig JR, Perruisseau-Carrier J (2012) Reconfigurable THz plasmonic antenna concept using a graphene stack. Appl Phys Lett 101:214102

    Article  Google Scholar 

  20. Dash S, Patnaik A, Kaushik BK (2019) Performance enhancement of graphene plasmonic nanoantenna for THz communication. IET Microwaves Antennas Propag 13(1):71–75

    Article  Google Scholar 

  21. Dash S, Patnaik A (2017) Graphene loaded frequency reconfigurable metal antenna. 2017 IEEE International Conference on Antenna Innovations &Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM 2017), Bangalore, 1–4

  22. Correas-Serrano D, Gomez-Diaz JS (2017) Graphene-based antennas for terahertz systems: a review. Forum for Electromagnetic Research Methods and Application Technologies, arXiv: 1704.00371, 1–26

  23. Yongle Wu, Meijun Qu, Jiao L, Liu Y, Ghassemlooy Z (2016) Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns. AIP Adv 6:065308

    Article  Google Scholar 

  24. Xu Z, Dong X, Bornemann J (2014) Design of a reconfigurable MIMO system for THz communications based on graphene antennas. IEEE Trans. on Terahertz Science and Technology. 4:609–617

  25. Bolotina KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    Article  Google Scholar 

  26. Novoselov K, Geim A, Morozov S, Jiang D, Grigorieva MIKIV, Dubonos S, Firsov A (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  27. Balandin AA et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  28. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):385–388

  29. Nair RR et al (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308

    Article  CAS  Google Scholar 

  30. Gusynin V, Sharapov S, Carbotte J (2006) Magneto-optical conductivity in graphene. J Phys Cond Matter 19(2):026222(1–28)

  31. Zeng C, Liu XX, Wang G (2014) Electrically tunable graphene plasmonic quasicrystal metasurfaces for transformation optics. Sci Rep 4(5763):1–8

  32. Dash S, Patnaik A (2021) Impact of silicon-based substrates on graphene THz antenna,Physica E: Low-dimensional Systems and Nanostructures. 126:114479

  33. Gumi K, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2012) Direct synthesis of graphene on SiO2 substrates by transfer-free processes. Jpn J Appl Phys 51:06FD12 (1–4)

  34. CST - Computer Simulation Technology Studio Suite 2018 version

  35. Tasolamprou AC et al (2019) Experimental demonstration of ultrafast THz modulation in a graphene-based thin film absorber through negative photoinduced conductivity. ACS Photonics 6:720–727

    Article  CAS  Google Scholar 

  36. Akyildiz IF, Nie S, Lin S-C, Chandrasekaran M (2016) 5g roadmap: 10 key enabling technologies. Comput Netw 106:1748

    Article  Google Scholar 

  37. Liaskos C, Nie S, Tsioliaridou A, Pitsillides A, Ioannidis S, Akyildiz IF (2018) A new wireless communication paradigm through software-controlled metasurfaces. IEEE Communication Magazine 56(9):162169

    Article  Google Scholar 

  38. Dash S, Liaskos C, Akyildiz IF, Pitsillides A, “Wideband perfect absorption polarization insensitive reconfigurable graphene metasurface for THz wireless environment,”, (2019) IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). Riga, Latvia 2019:93–96. https://doi.org/10.1109/MTTW.2019.8897231

    Article  Google Scholar 

  39. Dash S, Liaskos C, Akyildiz IF, Pitsillides A (2020) Graphene hypersurface for manipulation of THz waves. Mater Sci Forum 1009:63–68

    Article  Google Scholar 

  40. Chen J, Chen S, Gu P, Yan Z, Tang C, Xu Z, Liu B, Liu Z (2020) Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials. Carbon 162:187–194

    Article  CAS  Google Scholar 

Download references

Funding

This research is supported by the Indian Space Research Organization (ISRO), India, through grant no. ISRO/RES/3/760/17–18, and partially via the European Union via the Horizon 2020: Future Emerging Topics—Research and Innovation Action call (FETOPEN-RIA), grant EU736876, project VISORSURF (http://www.visorsurf.eu).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the research, analysis of the results, and the manuscript’s preparation.

Corresponding author

Correspondence to Sasmita Dash.

Ethics declarations

Consent to Participate

All authors agreed to participate in this research study.

Consent for Publication

Permission from all the authors has been taken to publish this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S., Soni, G., Patnaik, A. et al. Switched-Beam Graphene Plasmonic Nanoantenna in the Terahertz Wave Region. Plasmonics 16, 1855–1864 (2021). https://doi.org/10.1007/s11468-021-01449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01449-y

Keywords

Navigation