Skip to main content
Log in

Nonparametric Estimation of Effect Heterogeneity in Rare Events Meta-Analysis: Bivariate, Discrete Mixture Model

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Meta-analysis provides an integrated analysis and summary of the effects observed in \(k\) independent studies. The conventional analysis proceeds by first calculating a study-specific effect estimate, and then provides further analysis on the basis of the available \(k\) independent effect estimates associated with their uncertainty measures. Here we consider a setting where counts of events are available from \(k\) independent studies for a treatment and a control group. We suggest to model this situation with a study-specific Poisson regression model, and allow the study-specific parameters of the Poisson model to arise from a nonparametric mixture model. This approach then allows the estimation of the heterogeneity variance of the effect measure of interest in a nonparametric manner. A case study is used to illustrate the methodology throughout the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. M. Borenstein, L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein, Introduction to Meta-Analysis (Wiley, Chichester, 2009).

    Book  Google Scholar 

  2. D. Böhning, Computer-Assisted Analysis of Mixtures and Applications. Meta-Analysis, Disease Mapping and Others (Chapman and Hall, CRC, Boca Raton, 2000).

    MATH  Google Scholar 

  3. D. Böhning, K. Mylona, and A. Kimber, ‘‘Meta-analysis of clinical trials with rare events,’’ Biometr. J. 57, 633–648 (2015).

    Article  MathSciNet  Google Scholar 

  4. N. J. Cooper, K. R. Abrams, A. J. Sutton, D. Turner, and P. C. Lambert, ‘‘Use of bayesian methods for Markov modelling in cost-effectiveness analysis: An application to taxane use in advanced breast cancer,’’ J. R. Stat. Soc., Ser. A 166, 389–405 (2003).

    Article  Google Scholar 

  5. A. P. Dempster, N. M. Laird, and D. B. Rubin, ‘‘Maximum likelihood from incomplete data via the EM algorithm,’’ J. R. Stat. Soc., Ser. B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  6. J. P. T. Higgins and S. G. Thompson, ‘‘Quantifying heterogeneity in a meta-analysis,’’ Stat. Med. 21, 1530–1558 (2002).

    Article  Google Scholar 

  7. B. G. Lindsay, ‘‘The geometry of mixture likelihoods: A general theory,’’ Ann. Stat. 11, 86–94 (1983).

    MathSciNet  MATH  Google Scholar 

  8. B. G. Lindsay, ‘‘Mixture models: Theory, geometry and applications,’’ in NSF-CBMS Regional Conference Series in Probability and Statistics (Inst. Math. Stat., Hayward, 1995).

    Google Scholar 

  9. G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions (Wiley, New Jersey, 2007).

    MATH  Google Scholar 

  10. P. A. Naik, P. Shi, and C. L. Tsai, ‘‘Extending the Akaike information criterion to mixture regression models,’’ J. Am. Stat. Assoc. 102, 244–254 (2007).

    Article  MathSciNet  Google Scholar 

  11. S. Ray and B. G. Lindsay, ‘‘Model selection in high dimensions: A quadratic-risk-based approach,’’ J. R. Stat. Soc., Ser. B 70, 95–118 (2008).

    MathSciNet  MATH  Google Scholar 

  12. R. Schulze, H. Holling, and D. Böhning, Meta-Analysis: New Developments and Applications in Medical and Social Sciences (Hogrefe and Huber, Göttingen, 2003).

    Google Scholar 

  13. F. Smaill and G. J. Hofmeyr, ‘‘Antibiotic prophylaxis for cesarean section,’’ Cochrane Database Syst. Rev. 3, 1–71 (2002).

    Google Scholar 

  14. Stata Statistical Software: Release 116 (StataCorp LLC, College Station, TX, 2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dankmar Böhning, Susan Martin, Patarawan Sangnawakij, Katrin Jansen, Walailuck Böhning or Heinz Holling.

Additional information

(Submitted by A. I. Volodin)

APPENDIX

APPENDIX

STATA CODE

All computations were done using the package STATA16 (StataCorp 2019). In the following we demonstrate how to fit a two-component, bivariate mixture model. Different numbers of components can be achieved by replacing 2 with any desired number of components. The log-relative risks for the components are \({-}0.1581758\) and \({-}0.743582\). The associated weights can be found using the command estat lcprob which is provided at the end of the output below. \(y\) are the counts of events and \(\log n\) is the log-size of the study. \(treat\) is a binary treatment indicator with 1 denoting being in the treatment group and 0 otherwise.

. fmm 2 : poisson y treat, exposure(logn)

Finite mixture model Number of obs = 122

Log likelihood = -307.22036

Class : 1

Response : y

Model : poisson

 

Coef.

Std. Err.

z

P>|z|

[95% Conf.

Interval]

y

\(\,\)

treat

-0.1581758

0.1603739

-0.99

0.324

-0.4725029

0.1561514

_cons

1.128934

0.1005598

11.23

0.000

0.9318403

1.326027

ln(logn)

1

(exposure)

    

Class : 2

Response : y

Model : poisson

 

Coef.

Std. Err.

z

P>|z|

[95% Conf.

Interval]

y

\(\,\)

treat

-0.743582

0.1821602

-4.08

0.000

-1.100609

-0.3865546

_cons

-0.2447636

0.1432094

-1.71

0.087

-0.5254488

0.0359217

ln(logn)

1

(exposure)

    

. estat lcprob

Latent class marginal probabilities Number of obs = 122

 

Delta-method

 

Margin

Std. Err.

[95% Conf.

Interval]

Class

\(\,\)

1

0.2027119

0.0486684

0.1235069

0.3144862

2

0.7972881

0.0486684

0.6855138

0.8764931

The fmm module also has the option to keep certain parameters homogeneous, i.e. not to involve them in the mixture. This can be achieved with the optional parameter coef as shown below. Here we keep the parameter of the log-relative risk estimated constant over the components.. fmm 2, lcinvariant(coef): poisson y treat, exposure(logn)

Finite mixture model Number of obs = 122

Log likelihood = -311.15859=

Class : 1

Response : y

Model : poisson

 

Coef.

Std. Err.

z

P>|z|

[95% Conf.

Interval]

y

\(\,\)

treat

-0.3426311

0.1499642

-2.28

0.022

-0.6365555

-0.0487067

_cons

1.094218

0.0881464

12.41

0.000

0.9214543

1.266982

ln(logn)

1

(exposure)

    

Class : 2

Response : y

Model : poisson

 

Coef.

Std. Err.

z

P>|z|

[95% Conf.

Interval]

y

\(\,\)

treat

-0.3426311

0.1499642

-2.28

0.022

-0.6365555

-0.0487067

_cons

-0.5363991

0.1513947

-3.54

0.000

-0.8331272

-0.2396709

ln(logn)

1

(exposure)

    

A conventional two-stage meta-analysis can be accomplished by using the STATA-package metan. The data format needs to be of the so-called \(a-b-c-d\)-type:

  • \(a\) number of events in the treatment group

  • \(b\) number of non-events in the treatment group

  • \(c\) number of events in the control group

  • \(d\) number of non-events in the control group.

We yield the following output (the parameter random produces a random effects analysis including an estimte of \(\tau^{2}\)):

. metan a b c d, random

Study

RR

[95% Conf.

Interval]

% Weight

1

0.650

0.326

1.298

6.18

2

0.146

0.053

0.405

3.27

3

0.760

0.400

1.444

6.89

4

1.647

0.153

17.694

0.67

5

0.625

0.218

1.791

3.09

6

2.356

0.125

44.467

0.44

7

0.321

0.074

1.381

1.71

8

0.309

0.041

2.304

0.93

9

0.440

0.222

0.872

6.28

10

0.132

0.007

2.396

0.46

11

0.395

0.017

9.306

0.39

13

0.111

0.005

2.673

0.38

14

0.111

0.015

0.845

0.92

15

0.167

0.036

0.777

1.55

16

1.065

0.069

16.537

0.51

17

0.314

0.090

1.096

2.28

18

0.095

0.005

1.687

0.46

19

0.077

0.005

1.314

0.48

20

0.200

0.010

4.063

0.42

21

0.156

0.007

3.742

0.38

22

1.093

0.071

16.941

0.51

23

0.143

0.007

2.722

0.44

24

0.138

0.032

0.601

1.69

25

0.468

0.068

3.239

1.00

26

0.264

0.058

1.201

1.59

27

0.671

0.184

2.450

2.13

28

0.228

0.051

1.021

1.63

29

0.204

0.010

4.143

0.42

30

0.324

0.013

7.851

0.38

31

0.100

0.013

0.752

0.92

32

0.168

0.007

4.059

0.38

33

0.073

0.004

1.384

0.44

34

0.694

0.046

10.589

0.52

35

0.493

0.093

2.614

1.33

36

0.814

0.399

1.662

5.87

37

0.358

0.145

0.888

4.00

38

1.396

0.582

3.347

4.25

39

0.565

0.298

1.073

6.90

40

0.250

0.050

1.251

1.42

41

0.200

0.010

4.096

0.42

42

0.099

0.006

1.721

0.47

43

1.000

0.146

6.873

1.01

44

0.301

0.083

1.090

2.16

45

0.455

0.120

1.727

2.02

46

0.145

0.018

1.146

0.88

47

1.018

0.381

2.716

3.49

48

0.333

0.015

7.619

0.39

49

0.398

0.086

1.833

1.57

50

0.250

0.029

2.159

0.81

51

0.490

0.046

5.231

0.68

52

5.185

0.261

103.110

0.43

53

0.124

0.036

0.425

2.34

54

0.169

0.069

0.418

4.02

55

0.587

0.055

6.286

0.68

56

0.543

0.104

2.828

1.36

57

0.143

0.008

2.679

0.45

58

0.625

0.109

3.569

1.22

59

3.000

0.326

27.631

0.77

60

1.000

0.063

15.849

0.50

61

0.250

0.029

2.159

0.81

12

(Excluded)

   

D+L pooled RR

0.429

0.352

0.523

100.00

Heterogeneity chi-squared = 63.49 (d.f. = 59) p = 0.321

I-squared (variation in RR attributable to heterogeneity) = 7.1%

Estimate of between-study variance Tau-squared = 0.0405"

Test of RR=1 : z= 8.39 p = 0.000

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhning, D., Martin, S., Sangnawakij, P. et al. Nonparametric Estimation of Effect Heterogeneity in Rare Events Meta-Analysis: Bivariate, Discrete Mixture Model. Lobachevskii J Math 42, 308–317 (2021). https://doi.org/10.1134/S1995080221020074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221020074

Keywords:

Navigation