Skip to main content
Log in

On the Rates of Convergence in Central Limit Theorems for Compound Random Sums of Independent Random Variables

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Since the appearance of Robbins’s paper (1948) the central limit theorem for a sum of a random number of independent identically distributed random variables is one of the most fundamental results in probability, and explains the appearance of the normal distribution in a whole host of diverse applications in mathematics, physics, biology and the social sciences. Compound random sums are extensions of classical random sums when the numbers of independent summands in sums are partial sums of independent identically distributed positive integer-valued random variables, assumed independent of summands of sums. The main aim of this paper is to introduce central limit theorems for normalized compound random sums of independent random variables and establish the convergence rates in types of small-o and large-\(\mathcal{O}\) estimates, in term of Trotter-distance. The obtained results in this paper are extensions of several known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. L. Butzer, L. Hahn, and U. Westphal, ‘‘On the rate of approximation in the central limit theorem,’’ J. Approx. Theory 13, 327–340 (1975).

    Article  MathSciNet  Google Scholar 

  2. P. L. Butzer and L. Hahn, ‘‘General theorems on rates of convergence in distribution of random variables. I. General limit theorems,’’ J. Multivar. Anal. 8, 181–201 (1978).

    Article  MathSciNet  Google Scholar 

  3. P. L. Butzer and L. Hahn, ‘‘General theorems on rates of convergence in distribution of random variables. II. Applications to the stable limit laws and weak laws of large numbers,’’ J. Multivar. Anal. 8, 202–221 (1978).

    Article  MathSciNet  Google Scholar 

  4. P. L. Butzer and D. Schulz, ‘‘The random martingale central limit theorem and weak law of large numbers with \(o-\) rates,’’ Acta Sci. Math. 45, 81–94 (1983).

    MathSciNet  MATH  Google Scholar 

  5. L. H. Chen, L. Goldstein, and Q.-M. Shao, Normal Approximation by Stein’s Method, Probability and its Applications (Springer, Heidelberg, 2011).

    Book  Google Scholar 

  6. R. Cioczek and D. Szynal, ‘‘On the convergence rate in terms of the Trotter operator in the central limit theorem without moment conditions,’’ Bull. Polish Acad. Sci. Math. 35, 617–627 (1987).

    MathSciNet  MATH  Google Scholar 

  7. W. Feller, An Introduction to Probability Theory and its Applications, 2nd ed. (Wiley, New York, 1971), Vol 2.

    MATH  Google Scholar 

  8. B. Gnedenko and V. Yu. Korolev, Random Summations: Limit Theorems and Applications (CRC, New York, 1996).

    MATH  Google Scholar 

  9. A. Gut, Probability: A Graduate Course, 2nd ed. (Springer, Berlin, 2013).

    Book  Google Scholar 

  10. T. L. Hung, ‘‘On a probability metric based on Trotter operator,’’ Vietnam J. Math. 35, 21–32 (2007).

    MathSciNet  MATH  Google Scholar 

  11. T. L. Hung, ‘‘Estimations of the Trotter’s distance of two weighted random sums of d-dimensional independent random variables,’’ Int. Math. Forum 4, 1079–1089 (2009).

  12. T. L. Hung and T. T. Thanh, ‘‘Some results on asymptotic behaviors of random sums of independent identically distributed random variables,’’ Commun. Korean Math. Soc. 25, 119–128 (2010).

    Article  MathSciNet  Google Scholar 

  13. T. L. Hung and T. T. Thanh, ‘‘On the rate of convergence in limit theorems for random sums via Trotter–distance,’’ J. Inequal. Appl., No. 1, 404 (2013). http://www.journalofinequalitiesandapplications.com/content/2013/1/404.

  14. L. T. Giang and T. L. Hung, ‘‘An extension of random summations of independent and identically distributed random variables,’’ Commun. Korean Math. Soc. 33, 605–618 (2018).

    MathSciNet  MATH  Google Scholar 

  15. T. L. Hung, ‘‘A study of chi-square-type distribution with geometrically distributed degrees of freedom in relation to distributions of geometric random sums,’’ Math. Slov. 70, 213–232 (2020). https://doi.org/10.1515/ms-2017-0345

    Article  MathSciNet  MATH  Google Scholar 

  16. Ü Işlak, ‘‘Asymptotic results for random sums of dependent random variables,’’ Stat. Probab. Lett. 109, 22–29 (2016).

    Article  MathSciNet  Google Scholar 

  17. V. Kalashnikov, Geometric Sums: Bounds for Rare Events with Applications (Kluwer Academic, Dordrecht, 1997).

    Book  Google Scholar 

  18. H. Kirschfink, ‘‘The generalized Trotter operator and weak convergence of dependent random variables in different probability metrics,’’ Results Math. 15, 294–323 (1989).

    Article  MathSciNet  Google Scholar 

  19. V. M. Kruglov and V. Yu. Korolev, Limit Theorems for Random Sums (Mosk. Gos. Univ., Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  20. A. I. Khuri, Advanced Calculus with Applications in Statistics, 2nd ed. (Wiley, Gainesville, FL, 2003).

    MATH  Google Scholar 

  21. V. V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random Variables (Clarendon, Oxford, 1995).

    MATH  Google Scholar 

  22. P. B. L. S. Rao, ‘‘On the rate of approximation in the multidimensional central limit theorem,’’ Liet. Matem. Rink 17, 187–194 (1977).

    MathSciNet  MATH  Google Scholar 

  23. A. Rényi, Probability Theory (Akademiai Kiado, Budapest, 1970).

    MATH  Google Scholar 

  24. H. Robbins, ‘‘The asymptotic distribution of the sums of a random number of random variables,’’ Bull. Am. Math. Soc. 54, 1151–1161 (1948).

    Article  MathSciNet  Google Scholar 

  25. Z. Rychlik and D. Szynal, ‘‘Convergence rates in the central limit theorem for sums of a random number of independent random variables,’’ Probab. Theory Appl. 20, 359–370 (1975).

    MathSciNet  MATH  Google Scholar 

  26. Z. Rychlik and D. Szynal, ‘‘On the rate of convergence in the central limit theorem,’’ Banach Center Publ. 5, 221–229 (1979).

    Article  Google Scholar 

  27. Z. Rychlik and D. Szynal, ‘‘On the rate of approximation in the random-sum central limit theorem,’’ Teor. Veroyatn. Primen. 24, 614–620 (1979).

    MathSciNet  MATH  Google Scholar 

  28. Z. Rychlik, ‘‘A central limit theorem for sums of a random number of independent random variables,’’ Colloq. Math. 35, 147–158 (1976).

    Article  MathSciNet  Google Scholar 

  29. V. Sakalauskas, ‘‘On an estimate in the multidimensional limit theorems,’’ Liet. Matem. Rink. 17, 195–201 (1977).

    MathSciNet  MATH  Google Scholar 

  30. J. G. Shanthikumar and U. Sumita, ‘‘A central limit theorem for random sums of random variables,’’ Operat. Res. Lett. 3, 153–155 (1984).

    Article  MathSciNet  Google Scholar 

  31. P. K. Sen and J. M. Singer, Large Sample Methods in Statistics. An Introduction with Applications (Chapman and Hall, New York, 1993).

    Book  Google Scholar 

  32. H. F. Trotter, ‘‘An elementary proof of the central limit theorem,’’ Arch. Math. (Basel) 10, 226–234 (1959).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Loc Hung.

Additional information

(Submitted by A. I. Volodin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loc Hung, T. On the Rates of Convergence in Central Limit Theorems for Compound Random Sums of Independent Random Variables. Lobachevskii J Math 42, 374–393 (2021). https://doi.org/10.1134/S1995080221020128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221020128

Keywords:

Navigation