Skip to main content
Log in

The free carriers loss, free carriers susceptibility, and optical VEL and SEL functions in ZnO films doped by Cu, Al, and Cu-Al composite nanoparticles

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The purpose of this work is to investigate the optical constants of ZnO films doped by Cu, Al, and Cu-Al nanoparticles. The reflectance and the transmittance spectra measurements were applied for calculating these optical constants in the range of 200–2500 nm. It can be seen that ZnO films doped with Al nanoparticles have a maximum value nanoparticles size of about 23.73 nm. With increasing annealing temperature for all wavelength range, due to the improvement of crystalline structure and hence decreasing defects, the extinction coefficient of films decreased. The theoretical extrapolation of ε1 versus λ2 at low wavelengths values provides the dielectric constant ε and for the ZnO films doped with Cu nanoparticles, it has a maximum value of 4.61. The ZnO films doped by Al nanoparticles have a minimum value of \({\chi }_{c}\) in all energy range. The dissipation factor tan δ of ZnO films doped by Cu nanoparticles especially in high energy has a maximum value. SEL functions in ZnO films doped by Cu nanoparticles have the maximum value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M Masashi, R P Camata and Z Bandic MRS Online Proc. Library 869 17 (2005).

    Article  Google Scholar 

  2. C S Hong, H H Park, S J Wang, J Moon, H H Park, R H Hill Appl. Surf. Sci. 252 7739 (2006)

  3. T Minami, Y Nishi and T Miyata Thin Solid Films 549 65 (2013).

    Article  ADS  Google Scholar 

  4. L Chow, O Lupan, G Chai, H Khallaf, L K Ono, BRoldanGunenya,I M Tiginyanu, V VUrsaki, V Sontea, A Schulte Sens. Act. A: Physical 189 399 (2013)

  5. L Zhang, K Jin, S Li, L Wang, Y Zhang, X Li J. Electr. Mater. 44 244 (2015)

    Article  ADS  Google Scholar 

  6. Y Wang, X Chen, L Wang, S Yang, Z Feng Phys. Procedia 18 85 (2011)

  7. H Masui, S Nakamura, S P Denbaars, U K Mishra IEEE Trans. Electron Devices 57 88 (2010)

  8. W Li, J Chen, H Cui, F Liu and X Hao Mater. Lett. 130 87 (2014)

    Article  Google Scholar 

  9. R Huang, S Xu, X Wang, W Guo, C Song, J Song, K Ming Ho, S Du, N Wang Opt. Lett. 37 133 (2012)

  10. L Dejam, S M Elahi, H HonarvarNazari, H Elahi, S Solaymani, A Ghaderi J. Mater. Sci. Mater. Electron. 27 685 (2016)

  11. S Sadjadi, M Eskandari Ultrason Sonochem 20 640 (2013)

  12. Z Zang, X Tang J. Alloys Compd 619 98 (2015)

  13. Y Sun, N G Ndifor-Angwafor, D Jason Riley, M N R AshfoldChem. Phys. Lett. 431 352 (2006)

  14. S Talu, S Stach, S Solaymani, R Moradian, A Ghaderi, M R Hantehzadeh, S M Elahi, Z Garczyk, S Izadyar J. Electroanal. Chem. 749 31 (2015)

  15. S Talu, S Stach, T Ghodselahi, S Solaymani, A Ghaderi, A Boochani, Z Garczyk J. Phys. Chem. B 119 17887 (2015)

  16. A Ghaderi, S M Elahi, S Solaymani, M Naseri, M Ahmadirad, S Bahrami and A E Khalili J. Phys. 77 61171 (2011)

    Google Scholar 

  17. S T Tan, B J Chen, X W Sun, W J Fan, H S Kwok, X H Zhang and S J Chauaa J. Appl. Phys. 98 013505 (2005).

    Article  ADS  Google Scholar 

  18. H Kozuka, A Yamano, T Fukui, H Uchiyama, M Takahashi, M Yoki and T Akase J. Appl. Phys. 111 016106 (2012).

    Article  Google Scholar 

  19. V Dalouji Opt. Quant. Electron 50 325 (2018)

  20. H Chen, H J Jin, C B Park, G C Hoang Tran. Electric. Electron. Mater. 10 93 (2009)

  21. K M K Srivatsa, D Chhikara, M Senthil Kumar J. Mater. Sci. Technol. 28 317 (2012)

  22. S Talu, M Bramowicz, S Kulesza, S Solaymani, A Ghaderi, L Dejam and M S Elahi A Boochani Superlatt. Microstruct 93 109 (2016).

    Article  ADS  Google Scholar 

  23. B Chen, Z Deng, W Li, M Gao, J Zhao, G Zhao, S Yu, X Wang, Q Liu, Ch JinJ. AIP Adv. 120 083902 (2016)

  24. N Rahimi, V Dalouji, S Rezaee J. Dispersion Sci. Technol. 10 pp (2020) DOI:https://doi.org/10.1080/01932691.2020.1847657

  25. L Dejam, S Solaymani, A Achour, S Stachd, Ş Ţălu, N BNezafat, V Dalouji, A Shokri, A Ghaderi Chem. Phys. Lett. 719 78 (2019)

  26. V Dalouji, P Ebrahimi, N Binaei, E Tanhaee, N BNezafat, L Dejam, S Solaymani J. Supercond. Novel. Mag. 32 1319 (2019)

  27. S Solaymani, A Ghaderi, L Dejam, Ż Garczyk, W Sapota, SStach, V Dalouji, C Luna, S MElahi International Journal of Hydrogen Energy 42 14205 (2017)

  28. P Abbasi and V Dalouj Indian J Phys (2020). https://doi.org/10.1007/s12648-020-01840-1

    Article  Google Scholar 

  29. S Goudarzi and V Dalouj Optik 223 165585 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vali Dalouji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, N., Dalouji, V. The free carriers loss, free carriers susceptibility, and optical VEL and SEL functions in ZnO films doped by Cu, Al, and Cu-Al composite nanoparticles. Indian J Phys 96, 1529–1537 (2022). https://doi.org/10.1007/s12648-021-02072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02072-7

Keywords

Navigation