Skip to main content

Advertisement

Log in

Microalgae-Based Wastewater Treatment and Recovery with Biomass and Value-Added Products: a Brief Review

  • Biology and Pollution (R Boopathy and H Yu, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

With economic development and population increase, environmental pollution and water shortages have become inevitable global problems. Microalgae-based wastewater treatment technology can not only purify wastewater and solve environmental pollution problems but also use the nutrient elements in wastewater to produce algal biomass, which has attracted more and more attention. This work reviews the current status of microalgae bioremediation of wastewater, aiming to provide a reference for further research in this field.

Recent Findings

Microalgae have been proven to be used to treat municipal wastewater, agricultural wastewater, and industrial wastewater and can convert nutrients into biomass. In order to further improve the wastewater treatment efficacy and algal biomass productivity, it is necessary to understand the mechanism of microalgae to remove nutrients and pollutants from wastewater. Currently, open ponds and enclosed photobioreactors are used for large-scale cultivation of microalgae, and various harvesting technologies are developed to achieve low-cost capture of microalgae as much as possible. Microalgae are rich in pigments, proteins, lipids, carbohydrates, vitamins, and antioxidants and can produce a variety of value-added products, making this biotechnology more cost-effective.

Summary

This review discusses the purification efficiencies of microalgae on wastewater from different sources and introduces the mechanism and influencing factors by which microalgae remove carbon, nitrogen, phosphorus, heavy metals, and antibiotics in details. Moreover, the advantages and disadvantages of different microalgae cultivation systems are analyzed. Finally, the different harvesting methods and the current application of microalgae biomass in various fields are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tan X, Xie GJ, Nie WB, Xing DF, Liu BF, Ding J, et al. High value-added biomaterials recovery from granular sludge based wastewater treatment process. Resour Conserv Recycl. 2021;169:105481. https://doi.org/10.1016/j.resconrec.2021.105481.

  2. Jafarinejad S. Forward osmosis membrane technology for nutrient removal/recovery from wastewater: recent advances, proposed designs, and future directions. Chemosphere. 2021;263:128116. https://doi.org/10.1016/j.chemosphere.2020.128116.

    Article  CAS  Google Scholar 

  3. Kb A. Use of water and land for food security and environmental sustainability. Irrig Drain. 2006;55(3):219–22. https://doi.org/10.1002/ird.254.

    Article  Google Scholar 

  4. Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev. 2013;19:360–9. https://doi.org/10.1016/j.rser.2012.11.030. This article gives a general introduction to the the major nutrient components of different wastewater streams and current algae production systems.

  5. Dutta A, Davies C, Ikumi DS. Performance of upflow anaerobic sludge blanket (UASB) reactor and other anaerobic reactor configurations for wastewater treatment: a comparative review and critical updates. J Water Supply Res Technol. 2018;67(8):858–84. https://doi.org/10.2166/aqua.2018.090.

    Article  Google Scholar 

  6. Montwedi M, Munyaradzi M, Pinoy L, Dutta A, Ikumi DS, Motoasca E, et al. Resource recovery from and management of wastewater in rural South Africa: possibilities and practices. J Water Process Eng. 2021;40:101978. https://doi.org/10.1016/j.jwpe.2021.101978.

  7. Jin L, Zhang G, Tian H. Current state of sewage treatment in China. Water Res. 2014;66:85–98. https://doi.org/10.1016/j.watres.2014.08.014.

    Article  CAS  Google Scholar 

  8. Qu J, Fan M. The current state of water quality and technology development for water pollution control in China. Crit Rev Environ Sci Technol. 2010;40(6):519–60. https://doi.org/10.1080/10643380802451953.

    Article  CAS  Google Scholar 

  9. Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W, et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour Technol. 2019;291. https://doi.org/10.1016/j.biortech.2019.121934. This article reviews the current status and development trend of microalgae-based wastewater treatment technology.

  10. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol. 2010;101(9):3097–105. https://doi.org/10.1016/j.biortech.2009.12.026.

    Article  CAS  Google Scholar 

  11. Yan J, Shamim T, Chou SK, Desideri U, Li H. Clean, efficient and affordable energy for a sustainable future. Appl Energy. 2017;185:953–62. https://doi.org/10.1016/j.apenergy.2016.06.005.

    Article  Google Scholar 

  12. Oswald WJ, Gotaas HB, Golueke CG, Kellen WR. Algae in waste treatment. Sewage Ind Wastes. 1957;29(4):437–55.

    Google Scholar 

  13. Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, et al. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol. 2011;102(8):5138–44. https://doi.org/10.1016/j.biortech.2011.01.091.

  14. Chi Z, Zheng Y, Jiang A, Chen S. Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl Biochem Biotechnol. 2011;165(2):442–53. https://doi.org/10.1007/s12010-011-9263-6.

    Article  CAS  Google Scholar 

  15. Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, et al. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res. 2013;47(13):4294–302. https://doi.org/10.1016/j.watres.2013.05.004.

  16. Wang M, Yang Y, Chen Z, Chen Y, Wen Y, Chen B. Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae. Bioresour Technol. 2016;222:130–8. https://doi.org/10.1016/j.biortech.2016.09.128.

    Article  CAS  Google Scholar 

  17. Oyebamiji OO, Boeing WJ, Holguin FO, Ilori O, Amund O. Green microalgae cultured in textile wastewater for biomass generation and biodetoxification of heavy metals and chromogenic substances. Bioresour Technol Rep. 2019;7. https://doi.org/10.1016/j.biteb.2019.100247.

  18. Mohd Udaiyappan AF, Abu Hasan H, Takriff MS, Sheikh Abdullah SR. A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. J Water Process Eng. 2017;20:8–21. https://doi.org/10.1016/j.jwpe.2017.09.006. This review introduces the types of agro-industrial wastewater treatment processes and the current status and challenges faced by the use of microalgae in the treatment of agro-industrial wastewater.

  19. Van Den Hende S, Claessens L, De Muylder E, Boon N, Vervaeren H. Microalgal bacterial flocs originating from aquaculture wastewater treatment as diet ingredient for Litopenaeus vannamei (Boone). Aquac Res. 2016;47(4):1075–89. https://doi.org/10.1111/are.12564.

  20. Guedes AC, Amaro HM, Sousa-Pinto I, Malcata FX. Chapter 16 -Algal spent biomass—A pool of applications. In: Pandey A, Chang JS, Soccol CR, Lee DJ, Chisti Y, editors. Biomass, Biofuels, Biochemicals, Biofuels from Algae. Second ed; 2019. p. 397–433. https://doi.org/10.1016/B978-0-444-64192-2.00016-0.

  21. Gonçalves AL, Pires JCM, Simões M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017;24:403–15. https://doi.org/10.1016/j.algal.2016.11.008.

    Article  Google Scholar 

  22. Ng IS, Tan SI, Kao PH, Chang YK, Chang JS. Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol J. 2017;12(10). https://doi.org/10.1002/biot.201600644.

  23. Diniz GS, Silva AF, Araújo OQF, Chaloub RM. The potential of microalgal biomass production for biotechnological purposes using wastewater resources. J Appl Phycol. 2017;29(2):821–32. https://doi.org/10.1007/s10811-016-0976-3.

    Article  CAS  Google Scholar 

  24. Hernandez-Garcia A, Velasquez-Orta SB, Novelo E, Yanez-Noguez I, Monje-Ramirez I, Orta Ledesma MT. Wastewater-leachate treatment by microalgae: biomass, carbohydrate and lipid production. Ecotoxicol Environ Saf. 2019;174:435–44. https://doi.org/10.1016/j.ecoenv.2019.02.052.

    Article  CAS  Google Scholar 

  25. Katam K, Bhattacharyya D. Comparative study on treatment of kitchen wastewater using a mixed microalgal culture and an aerobic bacterial culture: kinetic evaluation and FAME analysis. Environ Sci Pollut Res Int. 2018;25(21):20732–42. https://doi.org/10.1007/s11356-018-2209-6.

    Article  CAS  Google Scholar 

  26. Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour Technol. 2011;102(13):6909–19. https://doi.org/10.1016/j.biortech.2011.04.038.

    Article  CAS  Google Scholar 

  27. Zhou W, Li Y, Min M, Hu B, Zhang H, Ma X, et al. Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy. 2012;98:433–40. https://doi.org/10.1016/j.apenergy.2012.04.005.

    Article  CAS  Google Scholar 

  28. Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol. 2010;101(8):2623–8. https://doi.org/10.1016/j.biortech.2009.10.062.

  29. Zhou W, Wang Z, Xu J, Ma L. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. J Biosci Bioeng. 2018;126(5):644–8. https://doi.org/10.1016/j.jbiosc.2018.05.006.

    Article  CAS  Google Scholar 

  30. Zhou W, Chen P, Min M, Ma X, Wang J, Griffith R, et al. Environment-enhancing algal biofuel production using wastewaters. Renew Sust Energ Rev. 2014;36:256–69. https://doi.org/10.1016/j.rser.2014.04.073. This paper focuses on the current research status of algae biofuel production using wastewater.

  31. Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, et al. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol. 2010;162(4):1174–86. https://doi.org/10.1007/s12010-009-8866-7.

    Article  CAS  Google Scholar 

  32. AlMomani FA, Örmeci B. Performance of Chlorella Vulgaris, Neochloris Oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol Eng. 2016;95:280–9. https://doi.org/10.1016/j.ecoleng.2016.06.038.

    Article  Google Scholar 

  33. Lima S, Villanova V, Grisafi F, Caputo G, Brucato A, Scargiali F. Autochthonous microalgae grown in municipal wastewaters as a tool for effectively removing nitrogen and phosphorous. J Water Process Eng. 2020;38:101647. https://doi.org/10.1016/j.jwpe.2020.101647.

    Article  Google Scholar 

  34. Ji M-K, Abou-Shanab RAI, Kim S-H, Salama E-S, Lee S-H, Kabra AN, et al. Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol Eng. 2013;58:142–8. https://doi.org/10.1016/j.ecoleng.2013.06.020.

  35. Lavrinovičs A, Mežule L, Juhna T. Microalgae starvation for enhanced phosphorus uptake from municipal wastewater. Algal Res. 2020;52:102090. https://doi.org/10.1016/j.algal.2020.102090.

    Article  Google Scholar 

  36. Beltran-Flores E, Toran J, Caminal G, Blanquez P, Sarra M. The removal of diuron from agricultural wastewaters by Trametes versicolor immobilized on pinewood in simple channel reactors. Sci Total Environ. 2020;728. https://doi.org/10.1016/j.scitotenv.2020.138414.

  37. Khalid AAH, Yaakob Z, Abdullah SRS, Takriff MS. Assessing the feasibility of microalgae cultivation in agricultural wastewater: the nutrient characteristics. Environ Technol Innov. 2019;15. https://doi.org/10.1016/j.eti.2019.100402.

  38. Muhmood A, Lu J, Dong R, Wu S. Formation of struvite from agricultural wastewaters and its reuse on farmlands: status and hindrances to closing the nutrient loop. J Environ Manag. 2019;230:1–13. https://doi.org/10.1016/j.jenvman.2018.09.030.

    Article  CAS  Google Scholar 

  39. Hernández D, Riaño B, Coca M, García-González MC. Treatment of agro-industrial wastewater using microalgae–bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol. 2013;135:598–603. https://doi.org/10.1016/j.biortech.2012.09.029.

    Article  CAS  Google Scholar 

  40. Tan X-B, Zhao X-C, Yang L-B. Strategies for enhanced biomass and lipid production by Chlorella pyrenoidosa culture in starch processing wastewater. J Clean Prod. 2019;236:117671. https://doi.org/10.1016/j.jclepro.2019.117671.

    Article  CAS  Google Scholar 

  41. Li S, Zhao S, Yan S, Qiu Y, Song C, Li Y, et al. Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production — A review. Chin J Chem Eng. 2019;27(12):2845–56. https://doi.org/10.1016/j.cjche.2019.03.028.

    Article  CAS  Google Scholar 

  42. Zhou W, Hu B, Li Y, Min M, Mohr M, Du Z, et al. Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production. Appl Biochem Biotechnol. 2012;168(2):348–63. https://doi.org/10.1007/s12010-012-9779-4.

    Article  CAS  Google Scholar 

  43. Cañizares-Villanueva RO, Domínguez AR, Cruz MS, Ríos-Leal E. Chemical composition of cyanobacteria grown in diluted, aerated swine wastewater. Bioresour Technol. 1995;51(2-3):111–6. https://doi.org/10.1016/0960-8524(94)00099-M.

    Article  Google Scholar 

  44. Li G, Zhang J, Li H, Hu R, Yao X, Liu Y, et al. Towards high-quality biodiesel production from microalgae using original and anaerobically-digested livestock wastewater. Chemosphere. 2020:128578. https://doi.org/10.1016/j.chemosphere.2020.128578.

  45. Gutierrez J, Kwan TA, Zimmerman JB, Peccia J. Ammonia inhibition in oleaginous microalgae. Algal Res. 2016;19:123–7. https://doi.org/10.1016/j.algal.2016.07.016.

    Article  Google Scholar 

  46. Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol. 2011;102(1):17–25. https://doi.org/10.1016/j.biortech.2010.06.035.

    Article  CAS  Google Scholar 

  47. Chen CY, Kuo EW, Nagarajan D, Ho SH, Dong CD, Lee DJ, et al. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresour Technol. 2020;302. https://doi.org/10.1016/j.biortech.2020.122814.

  48. Ganeshkumar V, Subashchandrabose SR, Dharmarajan R, Venkateswarlu K, Naidu R, Megharaj M. Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp. MM3. Bioresour Technol. 2018;256:254–8. https://doi.org/10.1016/j.biortech.2018.02.025.

    Article  CAS  Google Scholar 

  49. Lv J, Liu Y, Feng J, Liu Q, Nan F, Xie S. Nutrients removal from undiluted cattle farm wastewater by the two-stage process of microalgae-based wastewater treatment. Bioresour Technol. 2018;264:311–8. https://doi.org/10.1016/j.biortech.2018.05.085.

    Article  CAS  Google Scholar 

  50. de Bashan LE, Bashan Y. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol. 2010;101(6):1611–27. https://doi.org/10.1016/j.biortech.2009.09.043.

    Article  CAS  Google Scholar 

  51. Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals. 2002;15(4):377–90. https://doi.org/10.1023/A:1020238520948.

    Article  CAS  Google Scholar 

  52. Aksu Z. Equilibrium and kinetic modelling of cadmium(II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol. 2001;21(3):285–94. https://doi.org/10.1016/s1383-5866(00)00212-4.

    Article  CAS  Google Scholar 

  53. El-Kassas HY, Mohamed LA. Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt J Aquat Res. 2014;40(3):301–8. https://doi.org/10.1016/j.ejar.2014.08.003.

    Article  Google Scholar 

  54. Rajkumar R, Sobri TM. Prospects of algae and their environmental applications in Malaysia: a case study. J Bioremediat Biodegrad. 2016;07(01). https://doi.org/10.4172/2155-6199.1000321.

  55. Lim SL, Chu WL, Phang SM. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol. 2010;101(19):7314–22. https://doi.org/10.1016/j.biortech.2010.04.092.

    Article  CAS  Google Scholar 

  56. Pena ACC, Agustini CB, Trierweiler LF, Gutterres M. Influence of period light on cultivation of microalgae consortium for the treatment of tannery wastewaters from leather finishing stage. J Clean Prod. 2020;263:121618. https://doi.org/10.1016/j.jclepro.2020.121618.

    Article  CAS  Google Scholar 

  57. Moreno-García AF, Neri-Torres EE, Mena-Cervantes VY, Altamirano RH, Pineda-Flores G, Luna-Sánchez R, et al. Sustainable biorefinery associated with wastewater treatment of Cr (III) using a native microalgae consortium. Fuel. 2021;290. https://doi.org/10.1016/j.fuel.2020.119040.

  58. Tang DYY, Khoo KS, Chew KW, Tao Y, Show PL. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol. 2020;304:122997. https://doi.org/10.1016/j.biortech.2020.122997.

    Article  CAS  Google Scholar 

  59. Markou G, Vandamme D, Muylaert K. Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res. 2014;65:186–202. https://doi.org/10.1016/j.watres.2014.07.025.

    Article  CAS  Google Scholar 

  60. Mirón AS. Garcı́a MCC, Gómez AC, Camacho FGa, Grima EM, Chisti Y. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J. 2003;16(3):287–97. https://doi.org/10.1016/s1369-703x(03)00072-x.

    Article  Google Scholar 

  61. Singh V, Mishra V. Bioremediation of nutrients and heavy metals from wastewater by microalgal cells: mechanism and kinetics. In: Tripathi Vea, editor. Microbial Genomics in Sustainable Agroecosystems. 2019. pp. 319-357. https://doi.org/10.1007/978-981-32-9860-6_16. This article highlights the mechanism and kinetic model of microalgae remediation of nutrients and heavy metals in wastewater.

  62. Uggetti E, Sialve B, Hamelin J, Bonnafous A, Steyer J-P. CO2 addition to increase biomass production and control microalgae species in high rate algal ponds treating wastewater. J CO2 Util. 2018;28:292–8. https://doi.org/10.1016/j.jcou.2018.10.009.

    Article  CAS  Google Scholar 

  63. Picardo MC, de Medeiros JL, Araujo Ode Q, Chaloub RM. Effects of CO2 enrichment and nutrients supply intermittency on batch cultures of Isochrysis galbana. Bioresour Technol. 2013;143:242–50. https://doi.org/10.1016/j.biortech.2013.05.113.

    Article  CAS  Google Scholar 

  64. Perez-Garcia O, Escalante FME, de Bashan LE, Bashan Y. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 2011;45(1):11–36. https://doi.org/10.1016/j.watres.2010.08.037.

    Article  CAS  Google Scholar 

  65. Raven JA, Beardall J, Flynn KJ, Maberly SC. Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin's insectivorous plants. J Exp Bot. 2009;60(14):3975–87. https://doi.org/10.1093/jxb/erp282.

    Article  CAS  Google Scholar 

  66. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, et al. Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol. 2010;21(3):277–86. https://doi.org/10.1016/j.copbio.2010.03.005.

    Article  CAS  Google Scholar 

  67. Juneja A, Ceballos R, Murthy G. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies. 2013;6(9):4607–38. https://doi.org/10.3390/en6094607.

    Article  CAS  Google Scholar 

  68. Ghosh A, Khanra S, Mondal M, Halder G, Tiwari ON, Bhowmick TK, et al. Effect of macronutrient supplements on growth and biochemical compositions in photoautotrophic cultivation of isolated Asterarcys sp. (BTA9034). Energ Convers Manage. 2017;149:39–51. https://doi.org/10.1016/j.enconman.2017.07.015.

    Article  CAS  Google Scholar 

  69. Obeid F, Chu Van T, Brown R, Rainey T. Nitrogen and sulphur in algal biocrude: a review of the HTL process, upgrading, engine performance and emissions. Energ Convers Manage. 2019;181:105–19. https://doi.org/10.1016/j.enconman.2018.11.054.

    Article  CAS  Google Scholar 

  70. Sniffen KD, Sales CM, Olson MS. The fate of nitrogen through algal treatment of landfill leachate. Algal Res. 2018;30:50–8. https://doi.org/10.1016/j.algal.2017.12.010.

    Article  Google Scholar 

  71. Zhu LD, Takala J, Hiltunen E, Wang ZM. Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production. Bioresour Technol. 2013;144:14–20. https://doi.org/10.1016/j.biortech.2013.06.061.

    Article  CAS  Google Scholar 

  72. Arumugam M, Agarwal A, Arya MC, Ahmed Z. Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresour Technol. 2013;131:246–9. https://doi.org/10.1016/j.biortech.2012.12.159.

    Article  CAS  Google Scholar 

  73. Wang C, Lei A, Zhou K, Hu Z, Hao W, Yang J. Growth and nitrogen uptake characteristics reveal outbreak mechanism of the opportunistic macroalga Gracilaria tenuistipitata. PLoS One. 2014;9(10). https://doi.org/10.1371/journal.pone.0108980.

  74. Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. Front Plant Sci. 2015;6. https://doi.org/10.3389/fpls.2015.00899.

  75. Nagarajan D, Lee DJ, Chen CY, Chang JS. Resource recovery from wastewaters using microalgae-based approaches: a circular bioeconomy perspective. Bioresour Technol. 2020;302:122817. https://doi.org/10.1016/j.biortech.2020.122817.

    Article  CAS  Google Scholar 

  76. Su Y. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Sci Total Environ. 2021;762. https://doi.org/10.1016/j.scitotenv.2020.144590. This review specifically summarizes the carbon, nitrogen, and phosphorus metabolisms in microalgae in depth.

  77. Dyhrman ST, Jenkins BD, Rynearson TA, Saito MA, Mercier ML, Alexander H, et al. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS One. 2012:7(3). https://doi.org/10.1371/journal.pone.0033768.

  78. Yamaguchi H, Arisaka H, Otsuka N, Tomaru Y. Utilization of phosphate diesters by phosphodiesterase-producing marine diatoms. J Plankton Res. 2014;36(1):281–5. https://doi.org/10.1093/plankt/fbt091.

    Article  CAS  Google Scholar 

  79. Whitton R, Ometto F, Pidou M, Jarvis P, Villa R, Jefferson B. Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environ Technol Rev. 2015;4(1):133–48. https://doi.org/10.1080/21622515.2015.1105308.

    Article  CAS  Google Scholar 

  80. Sun J, Cheng J, Yang Z, Li K, Zhou J, Cen K. Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation. Bioresour Technol. 2015;194:305–11. https://doi.org/10.1016/j.biortech.2015.07.041.

    Article  CAS  Google Scholar 

  81. Leong YK, Chang JS. Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol. 2020;303:122886. https://doi.org/10.1016/j.biortech.2020.122886. This article offers a well describing about recent advances and mechanisms involved in bioremediation of heavy metals using microalgae.

  82. Ozdemir G. Biosorption of chromium(VI), cadmium(II) and copper(II) by Pantoea sp. TEM18. Chem Eng J. 2004;102(3):249–53. https://doi.org/10.1016/j.cej.2004.01.032.

    Article  CAS  Google Scholar 

  83. Fard GH, Mehrnia MR. Investigation of mercury removal by Micro-Algae dynamic membrane bioreactor from simulated dental waste water. J Environ Chem Eng. 2017;5(1):366–72. https://doi.org/10.1016/j.jece.2016.11.031.

    Article  CAS  Google Scholar 

  84. Urrutia C, Yañez-Mansilla E, Jeison D. Bioremoval of heavy metals from metal mine tailings water using microalgae biomass. Algal Res. 2019;43:101659. https://doi.org/10.1016/j.algal.2019.101659.

    Article  Google Scholar 

  85. Monteiro CM, Castro PM, Malcata FX. Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Prog. 2012;28(2):299–311. https://doi.org/10.1002/btpr.1504.

    Article  CAS  Google Scholar 

  86. Singh DV, Bhat RA, Upadhyay AK, Singh R, Singh DP. Microalgae in aquatic environs: a sustainable approach for remediation of heavy metals and emerging contaminants. Environ Technol Innov. 2021;21:101340. https://doi.org/10.1016/j.eti.2020.101340.

    Article  CAS  Google Scholar 

  87. Kosma CI, Lambropoulou DA, Albanis TA. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. J Hazard Mater. 2010;179(1-3):804–17. https://doi.org/10.1016/j.jhazmat.2010.03.075.

    Article  CAS  Google Scholar 

  88. Szekeres E, Baricz A, Chiriac CM, Farkas A, Opris O, Soran ML, et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ Pollut. 2017;225:304–15. https://doi.org/10.1016/j.envpol.2017.01.054.

    Article  CAS  Google Scholar 

  89. Zhang M, Liu YS, Zhao JL, Liu WR, He LY, Zhang JN, et al. Occurrence, fate and mass loadings of antibiotics in two swine wastewater treatment systems. Sci Total Environ. 2018;639:1421–31. https://doi.org/10.1016/j.scitotenv.2018.05.230.

    Article  CAS  Google Scholar 

  90. Guo WQ, Zheng HS, Li S, Du JS, Feng XC, Yin RL, et al. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae. Bioresour Technol. 2016;221:284–90. https://doi.org/10.1016/j.biortech.2016.09.036.

    Article  CAS  Google Scholar 

  91. Hom-Diaz A, Norvill ZN, Blanquez P, Vicent T, Guieysse B. Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal ponds. Chemosphere. 2017;180:33–41. https://doi.org/10.1016/j.chemosphere.2017.03.125.

    Article  CAS  Google Scholar 

  92. Villar-Navarro E, Baena-Nogueras RM, Paniw M, Perales JA, Lara-Martin PA. Removal of pharmaceuticals in urban wastewater: high rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes. Water Res. 2018;139:19–29. https://doi.org/10.1016/j.watres.2018.03.072.

    Article  CAS  Google Scholar 

  93. Angulo E, Bula L, Mercado I, Montano A, Cubillan N. Bioremediation of cephalexin with non-living Chlorella sp., biomass after lipid extraction. Bioresour Technol. 2018;257:17–22. https://doi.org/10.1016/j.biortech.2018.02.079.

    Article  CAS  Google Scholar 

  94. Mustafa S, Bhatti HN, Maqbool M, Iqbal M. Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: prospects, challenges and opportunities. J Water Process Eng. 2021;41:102009. https://doi.org/10.1016/j.jwpe.2021.102009.

    Article  Google Scholar 

  95. Leng L, Wei L, Xiong Q, Xu S, Li W, Lv S, et al. Use of microalgae based technology for the removal of antibiotics from wastewater: a review. Chemosphere. 2020;238. https://doi.org/10.1016/j.chemosphere.2019.124680. This article presents the factors affecting the removal of antibiotics by microalgae and its removal mechanism, and discusses other technologies combined with microalgae.

  96. Gao J, Chi J. Biodegradation of phthalate acid esters by different marine microalgal species. Mar Pollut Bull. 2015;99(1):70–5. https://doi.org/10.1016/j.marpolbul.2015.07.061.

    Article  CAS  Google Scholar 

  97. Chen J, Xie S. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. Sci Total Environ. 2018;640-641:1465–77. https://doi.org/10.1016/j.scitotenv.2018.06.016.

    Article  CAS  Google Scholar 

  98. Xiong J-Q, Kurade MB, Jeon B-H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem Eng J. 2017;313:1251–7. https://doi.org/10.1016/j.cej.2016.11.017.

    Article  CAS  Google Scholar 

  99. Santaeufemia S, Torres E, Mera R, Abalde J. Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. J Hazard Mater. 2016;320:315–25. https://doi.org/10.1016/j.jhazmat.2016.08.042.

    Article  CAS  Google Scholar 

  100. de Godos I, Munoz R, Guieysse B. Tetracycline removal during wastewater treatment in high-rate algal ponds. J Hazard Mater. 2012;229-230:446–9. https://doi.org/10.1016/j.jhazmat.2012.05.106.

    Article  CAS  Google Scholar 

  101. Beuckels A, Smolders E, Muylaert K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res. 2015;77:98–106. https://doi.org/10.1016/j.watres.2015.03.018.

    Article  CAS  Google Scholar 

  102. Zheng H, Liu M, Lu Q, Wu X, Ma Y, Cheng Y, et al. Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters. Bioresour Technol. 2018;249:479–86. https://doi.org/10.1016/j.biortech.2017.10.057.

  103. Lee CS, Lee S-A, Ko S-R, Oh H-M, Ahn C-Y. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Res. 2015;68:680–91. https://doi.org/10.1016/j.watres.2014.10.029.

    Article  CAS  Google Scholar 

  104. Chojnacka KW, Marquez-Rocha FJ. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology. 2004;3(1):21–34. https://doi.org/10.3923/biotech.2004.21.34.

    Article  Google Scholar 

  105. Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol. 2009;36(2):269–74. https://doi.org/10.1007/s10295-008-0495-6.

    Article  CAS  Google Scholar 

  106. Chew KW, Chia SR, Show PL, Yap YJ, Ling TC, Chang J-S. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. J Taiwan Inst Chem. 2018;91:332–44. https://doi.org/10.1016/j.jtice.2018.05.039.

    Article  CAS  Google Scholar 

  107. Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol. 2006;126(4):499–507. https://doi.org/10.1016/j.jbiotec.2006.05.002.

    Article  CAS  Google Scholar 

  108. Huang G, Chen F, Wei D, Zhang X, Chen G. Biodiesel production by microalgal biotechnology. Appl Energy. 2010;87(1):38–46. https://doi.org/10.1016/j.apenergy.2009.06.016.

    Article  CAS  Google Scholar 

  109. Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour Technol. 2011;102(1):71–81. https://doi.org/10.1016/j.biortech.2010.06.159.

    Article  CAS  Google Scholar 

  110. Heredia-Arroyo T, Wei W, Ruan R, Hu B. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy. 2011;35(5):2245–53. https://doi.org/10.1016/j.biombioe.2011.02.036.

    Article  CAS  Google Scholar 

  111. Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol. 2001;57(3):287–93. https://doi.org/10.1007/s002530100702.

    Article  CAS  Google Scholar 

  112. Pires JCM, Alvim-Ferraz MCM, Martins FG. Photobioreactor design for microalgae production through computational fluid dynamics: a review. Renew Sust Energ Rev. 2017;79:248–54. https://doi.org/10.1016/j.rser.2017.05.064.

    Article  CAS  Google Scholar 

  113. Lee YK. Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol. 2001;13:307–15. https://doi.org/10.1023/A:1017560006941.

    Article  Google Scholar 

  114. Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol. 2008;99(10):4021–8. https://doi.org/10.1016/j.biortech.2007.01.046.

    Article  CAS  Google Scholar 

  115. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res. 2008;1(1):20–43. https://doi.org/10.1007/s12155-008-9008-8.

    Article  Google Scholar 

  116. Montalvo GEB, Thomaz-Soccol V, Vandenberghe LPS, Carvalho JC, Faulds CB, Bertrand E, et al. Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production. Bioresour Technol. 2019;273:103–13. https://doi.org/10.1016/j.biortech.2018.10.081.

  117. Wen X, Du K, Wang Z, Peng X, Luo L, Tao H, et al. Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol Biofuels. 2016;9(1):123–34. https://doi.org/10.1186/s13068-016-0541-y.

    Article  CAS  Google Scholar 

  118. Gupta S, Pawar SB, Pandey RA. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Sci Total Environ. 2019;687:1107–26. https://doi.org/10.1016/j.scitotenv.2019.06.115.

    Article  CAS  Google Scholar 

  119. Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci. 2009;9(3):165–77. https://doi.org/10.1002/elsc.200900003.

    Article  CAS  Google Scholar 

  120. Yu KL, Show PL, Ong HC, Ling TC, Lan JC-W, Chen W-H, et al. Microalgae from wastewater treatment to biochar - feedstock preparation and conversion technologies. Energ Convers Manage. 2017;150:1–13. https://doi.org/10.1016/j.enconman.2017.07.060.

    Article  CAS  Google Scholar 

  121. Xu L, Weathers PJ, Xiong X-R, Liu C-Z. Microalgal bioreactors: challenges and opportunities. Eng Life Sci. 2009;9(3):178–89. https://doi.org/10.1002/elsc.200800111.

    Article  CAS  Google Scholar 

  122. Fernández FGA, Sevilla JMF, Pérez JAS, Grima EM, Chisti Y. Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci. 2001;56(8):2721–32. https://doi.org/10.1016/S0009-2509(00)00521-2.

    Article  Google Scholar 

  123. Hall DO, Fernandez FG, Guerrero EC, Rao KK, Grima EM. Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng. 2003;82(1):62–73. https://doi.org/10.1002/bit.10543.

    Article  CAS  Google Scholar 

  124. Tan XB, Lam MK, Uemura Y, Lim JW, Wong CY, Lee KT. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing. Chin J Chem Eng. 2018;26(1):17–30. https://doi.org/10.1016/j.cjche.2017.08.010.

    Article  CAS  Google Scholar 

  125. Suparmaniam U, Lam MK, Uemura Y, Lim JW, Lee KT, Shuit SH. Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renew Sust Energ Rev. 2019;115:109361. https://doi.org/10.1016/j.rser.2019.109361. This article provides a comprehensive overview of microalgae cultivation systems and harvesting methods for biofuel production.

  126. Mirón AS, MCC G, Camacho FG, Grima EM, Chisti Y. Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzym Microb Technol. 2002;31(7):1015–23. https://doi.org/10.1016/s0141-0229(02)00229-6.

    Article  Google Scholar 

  127. Ting H, Lu H, Ma S, Zhang Y, Liu Z, Duan N. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. Int J Agric Biol Eng. 2017;10:1–29. https://doi.org/10.3965/j.ijabe.20171001.2705.

    Article  Google Scholar 

  128. Faried M, Samer M, Abdelsalam E, Yousef RS, Attia YA, Ali AS. Biodiesel production from microalgae: processes, technologies and recent advancements. Renew Sust Energ Rev. 2017;79:893–913. https://doi.org/10.1016/j.rser.2017.05.199.

    Article  Google Scholar 

  129. Assunção J, Malcata FX. Enclosed “non-conventional” photobioreactors for microalga production: a review. Algal Res. 2020;52. https://doi.org/10.1016/j.algal.2020.102107.

  130. Richmond A. Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol. 2000;12:441–51. https://doi.org/10.1023/A:1008123131307.

    Article  Google Scholar 

  131. Monte J, Sá M, Galinha CF, Costa L, Hoekstra H, Brazinha C, et al. Harvesting of Dunaliella salina by membrane filtration at pilot scale. Sep Purif Technol. 2018;190:252–60. https://doi.org/10.1016/j.seppur.2017.08.019.

    Article  CAS  Google Scholar 

  132. Caetano NS, Martins AA, Gorgich M, Gutiérrez DM, Mata TM. Flocculation of Arthrospira maxima for improved harvesting. Energy Rep. 2019;6(S1):423–8. https://doi.org/10.1016/j.egyr.2019.08.083.

    Article  Google Scholar 

  133. Junior WGM, Gorgich M, Corrêa PS, Martins AA, Mata TM, Caetano NS. Microalgae for biotechnological applications: cultivation, harvesting and biomass processing. Aquaculture. 2020;528. https://doi.org/10.1016/j.aquaculture.2020.735562.

  134. Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29(6):686–702. https://doi.org/10.1016/j.biotechadv.2011.05.015.

    Article  CAS  Google Scholar 

  135. Brennan L, Owende P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14(2):557–77. https://doi.org/10.1016/j.rser.2009.10.009.

    Article  CAS  Google Scholar 

  136. Zhang H, Yang L, Zang X, Cheng S, Zhang X. Effect of shear rate on floc characteristics and concentration factors for the harvesting of Chlorella vulgaris using coagulation-flocculation-sedimentation. Sci Total Environ. 2019;688:811–7. https://doi.org/10.1016/j.scitotenv.2019.06.321.

    Article  CAS  Google Scholar 

  137. Japar AS, Takriff MS, Yasin NHM. Harvesting microalgal biomass and lipid extraction for potential biofuel production: a review. J Environ Chem Eng. 2017;5:555–63. https://doi.org/10.1016/j.jece.2016.12.016.

    Article  CAS  Google Scholar 

  138. Mantzorou A, Ververidis F. Microalgal biofilms: A further step over current microalgal cultivation techniques. Sci Total Environ. 2019;651(Pt 2):3187–201. https://doi.org/10.1016/j.scitotenv.2018.09.355.

    Article  CAS  Google Scholar 

  139. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy. 2010;2(1):012701–15. https://doi.org/10.1063/1.3294480.

    Article  CAS  Google Scholar 

  140. Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013;31(4):233–9. https://doi.org/10.1016/j.tibtech.2012.12.005.

    Article  CAS  Google Scholar 

  141. Liu PR, Wang T, Yang ZY, Hong Y, Hou YL. Long-chain poly-arginine functionalized porous Fe3O4 microspheres as magnetic flocculant for efficient harvesting of oleaginous microalgae. Algal Res. 2017;27:99–108. https://doi.org/10.1016/j.algal.2017.08.025.

    Article  Google Scholar 

  142. Fayad N, Yehya T, Audonnet F, Vial C. Harvesting of microalgae Chlorella vulgaris using electro-coagulation-flocculation in the batch mode. Algal Res. 2017;25:1–11. https://doi.org/10.1016/j.algal.2017.03.015.

    Article  Google Scholar 

  143. Nasir NM, Yunos FHM, Jusoh HHW, Mohammad A, Lam SS, Jusoh A. Subtopic: Advances in water and wastewater treatment harvesting of Chlorella sp. microalgae using Aspergillus niger as bio-flocculant for aquaculture wastewater treatment. J Environ Manag. 2019;249. https://doi.org/10.1016/j.jenvman.2019.109373.

  144. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. 2017;229:53–62. https://doi.org/10.1016/j.biortech.2017.01.006.

  145. Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65(6):635–48. https://doi.org/10.1007/s00253-004-1647-x.

    Article  CAS  Google Scholar 

  146. Silambarasan S, Logeswari P, Sivaramakrishnan R, Incharoensakdi A, Cornejo P, Kamaraj B, et al. Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere. 2021;268. https://doi.org/10.1016/j.chemosphere.2020.129323.

  147. Kwan TH, Pleissner D, Lau KY, Venus J, Pommeret A, Lin CS. Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste. Bioresour Technol. 2015;198:292–9. https://doi.org/10.1016/j.biortech.2015.09.003.

    Article  CAS  Google Scholar 

  148. Bhattacharya M, Goswami S. Microalgae – a green multi-product biorefinery for future industrial prospects. Biocatal Agric Biotechnol. 2020;25. https://doi.org/10.1016/j.bcab.2020.101580.

  149. Kumar BR, Mathimani T, Sudhakar MP, Rajendran K, Nizami A-S, Brindhadevi K, et al. A state of the art review on the cultivation of algae for energy and other valuable products: application, challenges, and opportunities. Renew Sust Energ Rev. 2021;138. https://doi.org/10.1016/j.rser.2020.110649. This article reviews the latest developments in the use of algae to produce energy and other valuable products.

  150. Deshmukh S, Kumar R, Bala K. Microalgae biodiesel: a review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process Technol. 2019;191:232–47. https://doi.org/10.1016/j.fuproc.2019.03.013.

    Article  CAS  Google Scholar 

  151. Hamed I. The evolution and versatility of microalgal biotechnology: a review. Compr Rev Food Sci Food Saf. 2016;15(6):1104–23. https://doi.org/10.1111/1541-4337.12227.

    Article  Google Scholar 

  152. Kusmayadi A, Leong YK, Yen H-W, Huang C-Y, Chang J-S. Microalgae as sustainable food and feed sources for animals and humans - biotechnological and environmental aspects. Chemosphere. 2021;271:129800. https://doi.org/10.1016/j.chemosphere.2021.129800.

    Article  CAS  Google Scholar 

  153. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, et al. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017;29(2):949–82. https://doi.org/10.1007/s10811-016-0974-5.

  154. Fuentes-Grünewald C, Ignacio Gayo-Pelaez J, Ndovela V, Wood E, Vijay Kapoore R, Anne LC. Towards a circular economy: a novel microalgal two-step growth approach to treat excess nutrients from digestate and to produce biomass for animal feed. Bioresour Technol. 2021;320(Pt A). https://doi.org/10.1016/j.biortech.2020.124349.

  155. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87–96. https://doi.org/10.1263/jbb.101.87.

    Article  CAS  Google Scholar 

  156. Costa D, Quigley S, Isherwood P, Mclennan S, Poppi D. Supplementation of cattle fed tropical grasses with microalgae increases microbial protein production and average daily gain. J Anim Sci. 2016;94:2047–58. https://doi.org/10.2527/jas2016-0292.

    Article  CAS  Google Scholar 

  157. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories. 2014;13:66. https://doi.org/10.1186/1475-2859-13-66.

    Article  Google Scholar 

  158. Suleiman AKA, Lourenço KS, Clark C, Luz RL, da Silva GHR, Vet LEM, et al. From toilet to agriculture: fertilization with microalgal biomass from wastewater impacts the soil and rhizosphere active microbiomes, greenhouse gas emissions and plant growth. Resour Conserv Recycl. 2020;161. https://doi.org/10.1016/j.resconrec.2020.104924.

  159. Castro JS, Calijuri ML, Assemany PP, Cecon PR, de Assis IR, Ribeiro VJ. Microalgae biofilm in soil: greenhouse gas emissions, ammonia volatilization and plant growth. Sci Total Environ. 2017;574:1640–8. https://doi.org/10.1016/j.scitotenv.2016.08.205.

    Article  CAS  Google Scholar 

  160. Markou G, Wang L, Ye J, Unc A. Using agro-industrial wastes for the cultivation of microalgae and duckweeds: contamination risks and biomass safety concerns. Biotechnol Adv. 2018;36(4):1238–54. https://doi.org/10.1016/j.biotechadv.2018.04.003.

    Article  CAS  Google Scholar 

  161. Posadas E, Morales MM, Gomez C, Acién FG, Muñoz R. Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem Eng J. 2015;265:239–48. https://doi.org/10.1016/j.cej.2014.12.059.

    Article  CAS  Google Scholar 

  162. Sánchez Zurano A, Garrido Cárdenas JA, Gómez Serrano C, Morales Amaral M, Acién-Fernández FG, Fernández Sevilla JM, et al. Year-long assessment of a pilot-scale thin-layer reactor for microalgae wastewater treatment. Variation in the microalgae-bacteria consortium and the impact of environmental conditions. Algal Res. 2020;50. https://doi.org/10.1016/j.algal.2020.101983.

  163. Su Y, Mennerich A, Urban B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011;45(11):3351–8. https://doi.org/10.1016/j.watres.2011.03.046.

    Article  CAS  Google Scholar 

  164. Aketo T, Hoshikawa Y, Nojima D, Yabu Y, Maeda Y, Yoshino T, et al. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. J Biosci Bioeng. 2020;129(5):565–72. https://doi.org/10.1016/j.jbiosc.2019.12.004.

    Article  CAS  Google Scholar 

  165. Lopez-Pacheco IY, Carrillo-Nieves D, Salinas-Salazar C, Silva-Nunez A, Arevalo-Gallegos A, Barcelo D, et al. Combination of nejayote and swine wastewater as a medium for Arthrospira maxima and Chlorella vulgaris production and wastewater treatment. Sci Total Environ. 2019;676:356–67. https://doi.org/10.1016/j.scitotenv.2019.04.278.

    Article  CAS  Google Scholar 

  166. Lee SA, Lee N, Oh HM, Ahn CY. Stepwise treatment of undiluted raw piggery wastewater, using three microalgal species adapted to high ammonia. Chemosphere. 2021;263:127934. https://doi.org/10.1016/j.chemosphere.2020.127934.

    Article  CAS  Google Scholar 

  167. Wang Y, Wang S, Sun L, Sun Z, Li D. Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification. Algal Res. 2020;47:101840. https://doi.org/10.1016/j.algal.2020.101840.

    Article  Google Scholar 

  168. Kamarudin KF, Yaakob Z, Rajkumar R, Takriff MS, Tasirin SM. Bioremediation of palm oil mill effluents (POME) using Scenedesmus dimorphus and Chlorella vulgaris. Adv Sci Lett. 2013;10(10):2914–8. https://doi.org/10.1166/asl.2013.5044.

    Article  CAS  Google Scholar 

  169. Kumar G, Huy M, Bakonyi P, Bélafi-Bakó K, Kim S-H. Evaluation of gradual adaptation of mixed microalgae consortia cultivation using textile wastewater via fed batch operation. Biotechnol Rep. 2018;20. https://doi.org/10.1016/j.btre.2018.e00289.

Download references

Funding

This research is funded by the National Natural Science Foundation of China (No.52071030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Hong.

Ethics declarations

Conflict of Interest

The authors declare no competing interests. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Human and Animal Rights and Informed Consent

This article does not contain any study with human and animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xy., Hong, Y. Microalgae-Based Wastewater Treatment and Recovery with Biomass and Value-Added Products: a Brief Review. Curr Pollution Rep 7, 227–245 (2021). https://doi.org/10.1007/s40726-021-00184-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00184-6

Keywords

Navigation