Skip to main content

Advertisement

Log in

Significance of Membrane Applications for High-Quality Biodiesel and Byproduct (Glycerol) in Biofuel Industries—Review

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Many of the highly populated and industrialized countries are paying more attention to green fuels. The conventional methods for biodiesel purification processes result in a large quantity of polluted water, leading to serious environmental concerns. To overcome the challenges in the existing process, addressing the membrane technology is a viable solution to direct further research toward sustainable membrane-based green production.

Recent Findings

The developing membrane technology is an alternative method for eliminating wastewater during biodiesel production from conventional processes. This paper provides a comprehensive review of recent development applications of the catalytic membrane and membrane materials for high-quality biodiesel production. Both polymeric and ceramic membranes result in optimum performance of more than 90% effective conversion and purification. The catalytic membrane reactor integrates chemical reaction and product separation concurrently in a single device system to produce high-quality biodiesel. Glycerol purification of 99% was achieved in the potential membrane distillation process.

Summary

This review critically summarizes biodiesel production and purification using membrane techniques and membrane reactors. Membrane material and separation efficiency were discussed in a short view. Besides, the significance of catalytic membrane reactor is outlined. Glycerol separation and purification by removal of water and other residual impurities were potentially achieved using membrane technology. Apart from applications of the membrane, the novel attempt of a combined description of influencing factors and limitations of the membrane during biodiesel production was revealed. Therefore, membrane applications in high-grade biodiesel and value-added byproduct production are the predominant green technological approach for next-generation biofuels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Girish CR. A Review of Various Technologies Used for Biodiesel Production. 2019;9:1379–92.

  2. Abomohra AE-F, Elsayed M, Esakkimuthu S, El-Sheekh M, Hanelt D. Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Prog Energy Combust Sci [Internet]. 2020;81:100868. Available from: http://www.sciencedirect.com/science/article/pii/S0360128520300782

  3. •• Kumar R, Ghosh A, Pal P. Sustainable Production of Biofuels through Membrane-Integrated Systems. Sep Purif Rev. 2019;49:1–22 This article detailed about membranes and membrane reactor importance.

    Google Scholar 

  4. OECD-FAO Agricultural Outlook 2019-2028 [Internet]. OECD; 2019 [cited 2020 Dec 27]. (OECD-FAO Agricultural Outlook). Available from: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2019-2028_agr_outlook-2019-en

  5. OECD-FAO Agricultural Outlook 2020-2029 [Internet]. OECD; 2020 [cited 2020 Dec 21]. (OECD-FAO Agricultural Outlook). Available from: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2020-2029_1112c23b-en

  6. •• Hajilary N, Rezakazemi M, Shirazian S. Biofuel types and membrane separation. Environ Chem Lett [Internet]. 2019;17(1):1–18. https://doi.org/10.1007/s10311-018-0777-9This article described wide applications of membrane and their catalytic functionalities in types of biofuel production.

    Article  CAS  Google Scholar 

  7. Mahlia TMI, Syazmi ZAHS, Mofijur M, Abas AEP, Bilad MR, Ong HC, et al. Patent landscape review on biodiesel production: Technology updates. Renew Sustain Energy Rev [Internet]. 2020;118:109526 Available from: http://www.sciencedirect.com/science/article/pii/S1364032119307348.

    Article  CAS  Google Scholar 

  8. Daud NM, Sheikh Abdullah SR, Abu Hasan H, Yaakob Z. Production of biodiesel and its wastewater treatment technologies: A review. Process Saf Environ Prot [Internet]. 2015;94:487–508 Available from: http://www.sciencedirect.com/science/article/pii/S0957582014001712.

    Article  CAS  Google Scholar 

  9. Torres N, Silva Lima Á, Ferreira LF, Andrade Oliveira J, Cavalcanti E. Treatment of wastewater from biodiesel generation and its toxicity evaluation by raphidocelis subcapitata. Brazilian J Chem Eng. 2018 Jun 1;35:563–74.

    Article  CAS  Google Scholar 

  10. Li J, Wang H, Yuan X, Zhang J, Chew JW. Metal-organic framework membranes for wastewater treatment and water regeneration. Coord Chem Rev [Internet]. 2020;404:213116. Available from: http://www.sciencedirect.com/science/article/pii/S0010854519304527

  11. Obotey Ezugbe E, Rathilal S. Membrane Technologies in Wastewater Treatment: A Review [Internet]. Vol. 10, Membranes. Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4000, South Africa.; 2020. Available from: http://europepmc.org/abstract/MED/32365810

  12. Abdurakhman YB, Putra ZA, Bilad MR. Aspen HYSYS Simulation for Biodiesel Production from Waste Cooking Oil using Membrane Reactor. IOP Conf Ser Mater Sci Eng [Internet]. 2017;180:12273. Available from. 2017. https://doi.org/10.1088/1757-899X/180/1/012273.

  13. Chol CG, Dhabhai R, Dalai AK, Reaney M. Purification of crude glycerol derived from biodiesel production process: Experimental studies and techno-economic analyses. Fuel Process Technol [Internet]. 2018;178:78–87. Available from: http://www.sciencedirect.com/science/article/pii/S0378382017321859

  14. Dhabhai R, Ahmadifeijani E, Dalai AK, Reaney M. Purification of crude glycerol using a sequential physico-chemical treatment, membrane filtration, and activated charcoal adsorption. Sep Purif Technol [Internet]. 2016;168:101–6. Available from: http://www.sciencedirect.com/science/article/pii/S1383586616305081

  15. Gude VG, Martinez-Guerra E. Green chemistry with process intensification for sustainable biodiesel production. Environ Chem Lett [Internet]. 2018;16(2):327–41. Available from. 2018. https://doi.org/10.1007/s10311-017-0680-9.

  16. Cannilla C, Bonura G, Costa F, Frusteri F. Biofuels production by esterification of oleic acid with ethanol using a membrane assisted reactor in vapour permeation configuration. Appl Catal A Gen [Internet]. 2018;566:121–9. Available from: http://www.sciencedirect.com/science/article/pii/S0926860X18304083

  17. Saleh J, Dubé MA, Tremblay AY. Separation of glycerol from FAME using ceramic membranes. Fuel Process Technol [Internet]. 2011;92(7):1305–10 Available from: http://www.sciencedirect.com/science/article/pii/S0378382011000531.

    Article  CAS  Google Scholar 

  18. •• Shi W, Li H, Yu B, Zhang H, Su Y. Biodiesel Production Catalyzed by Polyvinyl Guanidineacetic Membrane. Catal Letters [Internet]. 2020; Available from: 10.1007/s10562-020-03279-9. This article considers the kinetic model for membrane catalyst function and influencing their characteristics in membrane reactor.

  19. Rodriguez N, Torres J, Ochoa N, Marchese J, Pagliero C. Application of a composite ultrafiltration membrane for biodiesel purification. Matéria (Rio Janeiro). 2018;23.

  20. Atadashi IM. Purification of crude biodiesel using dry washing and membrane technologies. Alexandria Eng J [Internet]. 2015;54(4):1265–72 Available from: http://www.sciencedirect.com/science/article/pii/S1110016815001325.

    Article  Google Scholar 

  21. Tabatabaei M, Karimi K, Sárvári Horváth I, Kumar R. Recent trends in biodiesel production. Biofuel Res J [Internet]. 2015;2(3):258–67 Available from: http://hb.diva-portal.org/smash/get/diva2:896198/FULLTEXT01.pdf.

    Article  CAS  Google Scholar 

  22. Mozaffarikhah K, Kargari A, Tabatabaei M, Ghanavati H, Shirazi MMA. Membrane treatment of biodiesel wash-water: A sustainable solution for water recycling in biodiesel production process. J Water Process Eng [Internet]. 2017;19:331–7 Available from: http://www.sciencedirect.com/science/article/pii/S2214714417302404.

    Article  Google Scholar 

  23. •• Hafeez S, Al-Salem SM, Manos G, Constantinou A. Fuel production using membrane reactors: a review. Environ Chem Lett [Internet]. 2020;18(5):1477–1490. Available from: https://doi.org/10.1007/s10311-020-01024-7. This article elaborated about membrane materials, catalytic functional properties and advantage of membrane reactor for renewable feuel production.

  24. Khan Y, Yamsaengsung R, Chetpattananondh P, Khongnakorn W. Treatment of wastewater from biodiesel plants using microbiological reactor technology. Int J Environ Sci Technol. 2014;12:297–306.

    Article  Google Scholar 

  25. •• Ying Shi C, Hui Ting LL, Boon Seng O. Membrane Distillation for Water Recovery and Its Fouling Phenomena. J Membr Sci Res [Internet]. 2020;6(1):107–24. Available from: http://www.msrjournal.com/article_36907.html. This article described that the water recovery via different types of membrane distillation techniques and evaluate their fouling performances. And also explained the fouling mitigation from the perspective membrane material and design using in membrane distillation.

  26. A. Shirazi MM, Kargari A. A review on application of membrane distillation (MD) process for wastewater treatment. J Membr Sci Res. 2015;

  27. Aghababaie M, Beheshti M, Razmjou A, Bordbar A-K. Two phase enzymatic membrane reactor for the production of biodiesel from crude Eruca sativa oil. Renew Energy [Internet]. 2019;140:104–10 Available from: http://www.sciencedirect.com/science/article/pii/S096014811930374X.

    Article  CAS  Google Scholar 

  28. • Vasić K, Hojnik Podrepšek G, Knez Ž, Leitgeb M. Biodiesel Production Using Solid Acid Catalysts Based on Metal Oxides. Vol. 10, Catalysts . 2020. This article highlights the biodiesel production using different type of metal oxides catalysts.

  29. •• Zhang J, Li X, He B, Song Y, Ji Y, Cui Z, et al. Biodiesel Production through Heterogeneous Catalysis Using a Novel Poly(phenylene sulfide) Catalytic Membrane. Energy & Fuels [Internet]. 2020 Jun 18;34(6):7422–9. Available from: 10.1021/acs.energyfuels.0c00522. This article pointed out the membrane materials and membrane influencing reaction process parameters during biodiesel production.

  30. •• Tran D-T, Chang J-S, Lee D-J. Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes. Appl Energy [Internet]. 2017;185:376–409. Available from: http://www.sciencedirect.com/science/article/pii/S0306261916315914. This article disclosed about various aspects catalyst design, reactor type and catalyzed transesterification reaction mechanisms.

  31. • Unlu D, Hilmioglu ND. Pervaporation catalytic membrane reactor application over functional chitosan membrane. J Memb Sci [Internet]. 2018;559:138–47. Available from: http://www.sciencedirect.com/science/article/pii/S0376738818302941. This article talks about catalytic membrane reactor by catalyst incorporated functional membrane and discussed about effect of some reaction parameters. .

  32. Helmi A, Gallucci F. Latest Developments in Membrane (Bio)Reactors. Vol. 8, Processes . 2020.

  33. Abdallah H. A Review on Catalytic Membranes Production and Applications. Bull Chem React Eng Catal. 2017 Aug 1;12:136.

    Article  CAS  Google Scholar 

  34. • Deeba F, Kumar B, Arora N, Singh S, Kumar A, Han SS, et al. Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production. Renew Energy [Internet]. 2020 Oct;159:127–39. Available from: http://www.sciencedirect.com/science/article/pii/S0960148120307278. This article shows the individual primary catalysts properties and importance in biodiesel production as well as effect of significant parameters on the FAME yield.

  35. •• Ostojčić M, Brkić S, Tišma M, Zelić B, Budžaki S. Membrane Filtration as an Environmentally Friendly Method for Crude Biodiesel Purification. Kem u Ind. 2020 Mar 17;69. This article detailed about membrane materials and possibilities of using ultrafiltration and microfiltration in the biodiesel purification process.

  36. Shuit SH, Tan SH. Esterification of palm fatty acid distillate with methanol via single-step pervaporation membrane reactor: A novel biodiesel production method. Energy Convers Manag [Internet]. 2019;201:112110. Available from: http://www.sciencedirect.com/science/article/pii/S0196890419311161

  37. •• Sokač T, Gojun M, Tušek AJ, Šalić A, Zelić B. Purification of biodiesel produced by lipase catalysed transesterification by ultrafiltration: Selection of membranes and analysis of membrane blocking mechanisms. Renew Energy [Internet]. 2020;159:642–51. Available from: http://www.sciencedirect.com/science/article/pii/S0960148120308363. This article offers through using lipase enzyme transesterification with different types of membranes and evaluated based on permeate flux and glycerol content in the permeate.

  38. Olagunju OA, Musonge P. Production of Biodiesel Using a Membrane Reactor to Minimize Separation Cost. IOP Conf Ser Earth Environ Sci [Internet]. 2017;78:12019. Available from. 2017. https://doi.org/10.1088/1755-1315/78/1/012019.

  39. Bateni H, Saraeian A, Able C. A comprehensive review on biodiesel purification and upgrading. Biofuel Res J [Internet]. 2017;4(3):668–90 Available from: https://www.biofueljournal.com/article_49781.html.

    Article  CAS  Google Scholar 

  40. Maghami M, Sadrameli SM, Shamloo M. Glycerin purification using asymmetric nano-structured ceramic membranes from production of waste fish oil biodiesel. Heat Mass Transf [Internet]. 2018;54(9):2683–90. Available from. 2018. https://doi.org/10.1007/s00231-018-2309-3.

  41. • Aca-Aca G, Loría-Bastarrachea MI, Ruiz-Treviño FA, Aguilar-Vega M. Transesterification of soybean oil by PAAc catalytic membrane: Sorption properties and reactive performance for biodiesel production. Renew Energy [Internet]. 2018;116:250–7. Available from: http://www.sciencedirect.com/science/article/pii/S0960148117309047. This article reveals the catalytic properties of membrane for acid catalyzed transesterification and pervaporation catalytic membrane reactor performance were carried out.

  42. • Li M, Zhang W, Zhou S, Zhao Y. Preparation of poly (vinyl alcohol)/palygorskite-poly (ionic liquids) hybrid catalytic membranes to facilitate esterification. Sep Purif Technol [Internet]. 2020;230:115746. Available from: http://www.sciencedirect.com/science/article/pii/S138358661932235X. This article elucidated the water selective pervaporation catalytic membrane and their use in catalytic membrane reactor for transesterification reaction to design a new process of biodiesel synthesis. .

  43. •• Tajziehchi K, Sadrameli SM. Optimization for free glycerol, diglyceride, and triglyceride reduction in biodiesel using ultrafiltration polymeric membrane: Effect of process parameters. Process Saf Environ Prot [Internet]. 2021;148:34–46. Available from: http://www.sciencedirect.com/science/article/pii/S0957582020317651. This paper elaborate about influencing factors of process parameters such as temperature, pressure and addition of water on free glycerol and impurites reduction as well as permeation flux performances with commercial ultrafiltration membrane.

  44. Luo Q, He B, Liang M, Kong A, Li J. Continuous transesterification to produce biodiesel under HTCC/Na2SiO3/NWF composite catalytic membrane in flow-through membrane reactor. Fuel [Internet]. 2017;197:51–7 Available from: http://www.sciencedirect.com/science/article/pii/S0016236116313254.

    Article  CAS  Google Scholar 

  45. Kusworo TD, Widayat W, Utomo DP, Pratama YHS, Arianti RAV. Performance evaluation of modified nanohybrid membrane polyethersulfone-nano ZnO (PES-nano ZnO) using three combination effect of PVP, irradiation of ultraviolet and thermal for biodiesel purification. Renew Energy [Internet]. 2020;148:935–45. Available from: http://www.sciencedirect.com/science/article/pii/S096014811931674X

  46. Rodrigues A, Bordado JC, Santos RG dos. Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways. Vol. 10, Energies . 2017.

  47. Ardi MS, Aroua MK, Hashim NA. Progress, prospect and challenges in glycerol purification process: A review. Renew Sustain Energy Rev [Internet]. 2015;42:1164–73 Available from: http://www.sciencedirect.com/science/article/pii/S1364032114009162.

    Article  CAS  Google Scholar 

  48. Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl Energy [Internet]. 2010;87(4):1083–95 Available from: http://www.sciencedirect.com/science/article/pii/S0306261909004346.

    Article  CAS  Google Scholar 

  49. Jung J-M, Oh J-I, Kim J-G, Kwon H-H, Park Y-K, Kwon EE. Valorization of sewage sludge via non-catalytic transesterification. Environ Int [Internet]. 2019;131:105035. Available from: http://www.sciencedirect.com/science/article/pii/S0160412019316563

  50. Gao L, Xu W, Xiao G. Modeling of biodiesel production in a membrane reactor using solid alkali catalyst. Chem Eng Process Process Intensif [Internet]. 2017;122:122–7 Available from: http://www.sciencedirect.com/science/article/pii/S0255270117303288.

    Article  CAS  Google Scholar 

  51. Gebremariam S, Marchetti J. Biodiesel production technologies: Review. AIMS Energy. 2017 May 1;5:425–57.

    Article  CAS  Google Scholar 

  52. •• Yesilyurt MK, Cesur C, Aslan V, Yilbasi Z. The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review. Renew Sustain Energy Rev [Internet]. 2020;119:109574. Available from: http://www.sciencedirect.com/science/article/pii/S1364032119307828. This article mainly focused on physiochemical properties of feed composition and primary individual catalysts for biodiesel production.

  53. Toldrá-Reig F, Mora L, Toldrá F. Developments in the Use of Lipase Transesterification for Biodiesel Production from Animal Fat Waste. Vol. 10, Applied Sciences . 2020.

  54. Santos S, Puna J, Gomes J. A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production. Vol. 13, Energies . 2020.

  55. Roy PK, Datta S, Nandi S, Al BF. Effect of mass transfer kinetics for maximum production of biodiesel from Jatropha Curcas oil: A mathematical approach. Fuel. 2014;134(October):39–44.

    Article  CAS  Google Scholar 

  56. Zhang L, Li Y, Liu Q, Li W, Xing W. Fabrication of ionic liquids-functionalized PVA catalytic composite membranes to enhance esterification by pervaporation. J Memb Sci [Internet]. 2019;584:268–81. Available from: http://www.sciencedirect.com/science/article/pii/S0376738819302376

  57. Zirehpour A, Rahimpour A. Membranes for Wastewater Treatment. In: Membranes for Wastewater Treatment: Applications. In: Nanostructured Polymer Membranes; 2016. p. 159–207.

    Chapter  Google Scholar 

  58. •• Hafeez S, Al-Salem S, Constantinou A. Membrane Reactors for Renewable Fuel Production and Their Environmental Benefits. In 2020. p. 383–411. This article report about membrane reactors for renewable fuel production and their purification functions.

  59. Savaliya ML, Dhorajiya BD, Dholakiya BZ. Current Trends in Separation and Purification of Fatty Acid Methyl Ester. Sep Purif Rev [Internet]. 2015; 44(1):28–40. Available from: https://doi.org/10.1080/15422119.2013.872126

  60. Ding J, Qu S, Lv E, Lu J, Yi W. Mini Review of Biodiesel by Integrated Membrane Separation Technologies That Enhanced Esterification/Transesterification. Energy & Fuels [Internet]. 2020;34(12):15614–33. Available from. https://doi.org/10.1021/acs.energyfuels.0c03307.

    Article  CAS  Google Scholar 

  61. Bagnato G, Iulianelli A, Sanna A, Basile A. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors. Vol. 7, Membranes . 2017.

  62. • Hapońska M, Nurra C, Abelló S, Makkee M, Salvadó J, Torras C. Membrane reactors for biodiesel production with strontium oxide as a heterogeneous catalyst. Fuel Process Technol [Internet]. 2019;185:1–7. Available from: http://www.sciencedirect.com/science/article/pii/S0378382018317569. This article mainly focused on membrane reactors design and performance evaluation with novel catalyst, although newly designed inert membrane reactor with catalyst on a feed side (IMRCF) were investigated.

  63. Liuzzi D, Pérez-Alonso FJ, Fierro JLG, Rojas S, van Wijk FL, Roghair I, et al. Catalytic membrane reactor for the production of biofuels. Catal Today [Internet]. 2016;268:37–45 Available from: http://www.sciencedirect.com/science/article/pii/S0920586115007324.

    Article  CAS  Google Scholar 

  64. Budiman Abdurakhman Y, Adi Putra Z, Bilad MR, Md Nordin NAH, Wirzal MDH. Techno-economic analysis of biodiesel production process from waste cooking oil using catalytic membrane reactor and realistic feed composition. Chem Eng Res Des [Internet]. 2018;134:564–74. Available from: http://www.sciencedirect.com/science/article/pii/S0263876218302284

  65. • Cannilla C, Bonura G, Frusteri F. Potential of Pervaporation and Vapor Separation with Water Selective Membranes for an Optimized Production of Biofuels—A Review. Catalysts. 2017;7 This article give details of membrane reactors process cofiguration along with catalytic membrane function in catalytic membrane reactor and catalytic performance enhancement via pervaporation (PV) and vaporpermeation (VP) technologies in biofuel production and separation were explained.

  66. Han Y, Lv E, Ma L, Lu J, Chen K, Ding J. Coupling membrane pervaporation with a fixed-bed reactor for enhanced esterification of oleic acid with ethanol. Energy Convers Manag [Internet]. 2015;106:1379–86. Available from: http://www.sciencedirect.com/science/article/pii/S0196890415009978

  67. •• Esmaeili A, Kirk DW. Water removal in the alkaline electrochemical valorization of glycerol by pervaporation. Sep Purif Technol [Internet]. 2020;248:116943. Available from: http://www.sciencedirect.com/science/article/pii/S1383586620314179. This article detailed dewatering from glycerol-water mixtures and evaluating commercial pervaporation membrane under different woking parameters namely, selectivity, permeability, longevity and different temperatures.

  68. de la Iglesia Ó, Sorribas S, Almendro E, Zornoza B, Téllez C, Coronas J. Metal-organic framework MIL-101(Cr) based mixed matrix membranes for esterification of ethanol and acetic acid in a membrane reactor. Renew Energy [Internet]. 2016;88:12–9. Available from: http://www.sciencedirect.com/science/article/pii/S0960148115304432

  69. Zhu H, Liu G, Yuan J, Chen T, Xin F, Jiang M, et al. In-situ recovery of bio-butanol from glycerol fermentation using PDMS/ceramic composite membrane. Sep Purif Technol [Internet]. 2019;229:115811. Available from: http://www.sciencedirect.com/science/article/pii/S1383586619308822

  70. Lin Y-K, Nguyen V-H, Yu JC-C, Lee C-W, Deng Y-H, Wu JCS, et al. Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes. J Taiwan Inst Chem Eng [Internet]. 2017;79:23–30. Available from: http://www.sciencedirect.com/science/article/pii/S1876107017303267

  71. Bredesen R. Inert Membrane Reactors BT - Encyclopedia of Membranes. In: Drioli E, Giorno L, editors. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016. p. 1035–7. Available from: https://doi.org/10.1007/978-3-662-44324-8_310

  72. Roy S, Ragunath S. Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges. Vol. 11, Energies . 2018.

  73. Alves MJ, Nascimento SM, Pereira IG, Martins MI, Cardoso VL, Reis M. Biodiesel purification using micro and ultrafiltration membranes. Renew Energy [Internet]. 2013;58:15–20 Available from: http://www.sciencedirect.com/science/article/pii/S0960148113001444.

    Article  CAS  Google Scholar 

  74. Peyravi M, Rahimpour A, Jahanshahi M. Developing nanocomposite PI membranes: Morphology and performance to glycerol removal at the downstream processing of biodiesel production. J Memb Sci. 2015;473(C):72–84.

    Article  CAS  Google Scholar 

  75. Gomes MCS, Pereira NC, de Barros STD. Separation of biodiesel and glycerol using ceramic membranes. J Memb Sci [Internet]. 2010;352(1):271–6 Available from: http://www.sciencedirect.com/science/article/pii/S0376738810001195.

    Article  CAS  Google Scholar 

  76. Gomes MCS, Arroyo PA, Pereira NC. Influence of acidified water addition on the biodiesel and glycerol separation through membrane technology. J Memb Sci [Internet]. 2013;431:28–36. Available from: http://www.sciencedirect.com/science/article/pii/S0376738812009556

  77. Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN. Crude biodiesel refining using membrane ultra-filtration process: An environmentally benign process. Egypt J Pet [Internet]. 2015;24(4):383–96 Available from: http://www.sciencedirect.com/science/article/pii/S1110062115000768.

    Article  Google Scholar 

  78. Shirazi MMA, Kargari A, Tabatabaei M, Ismail AF, Matsuura T. Concentration of glycerol from dilute glycerol wastewater using sweeping gas membrane distillation. Chem Eng Process Process Intensif [Internet]. 2014;78:58–66 Available from: http://www.sciencedirect.com/science/article/pii/S0255270114000257.

    Article  CAS  Google Scholar 

  79. Gomes MCS, Arroyo PA, Pereira NC. Influence of oil quality on biodiesel purification by ultrafiltration. J Memb Sci [Internet]. 2015;496:242–9 Available from: http://www.sciencedirect.com/science/article/pii/S037673881530168X.

    Article  CAS  Google Scholar 

  80. Mah S-K, Leo CP, Wu TY, Chai S-P. A feasibility investigation on ultrafiltration of palm oil and oleic acid removal from glycerin solutions: Flux decline, fouling pattern, rejection and membrane characterizations. J Memb Sci [Internet]. 2012;389:245–56 Available from: http://www.sciencedirect.com/science/article/pii/S0376738811007976.

    Article  CAS  Google Scholar 

  81. Madhumala M, Madhavi D, Sankarshana T, Sridhar S. Recovery of hydrochloric acid and glycerol from aqueous solutions in chloralkali and chemical process industries by membrane distillation technique. J Taiwan Inst Chem Eng [Internet]. 2014;45(4):1249–59 Available from: http://www.sciencedirect.com/science/article/pii/S1876107014000479.

    Article  CAS  Google Scholar 

  82. Zhang K, Qin Y, He F, Liu J, Zhang Y, Liu L. Concentration of aqueous glycerol solution by using continuous-effect membrane distillation. Sep Purif Technol [Internet]. 2015;144:186–96 Available from: http://www.sciencedirect.com/science/article/pii/S1383586615001264.

    Article  CAS  Google Scholar 

  83. Shi W, Li H, Su Y, Liu J. Biodiesel Production by Quaternized Polysulfone Membrane: Experimental and Kinetics Model. Energy Procedia. 2016;104:402–6.

    Article  CAS  Google Scholar 

  84. Bastrzyk J, Gryta M. Separation of post-fermentation glycerol solution by nanofiltration membrane distillation system. Desalin Water Treat. 2013 Jan 12;53:319–29.

    Article  Google Scholar 

  85. Torres J, Toledo Arana J, Ochoa N, Marchese J, Pagliero C. Biodiesel Purification Using Polymeric Nanofiltration Composite Membranes Highly Resistant to Harsh Conditions. Chem Eng Technol. 2017:41.

  86. Mah S-K, Chai S-P, Wu TY. Dehydration of glycerin solution using pervaporation: HybSi and polydimethylsiloxane membranes. J Memb Sci [Internet]. 2014;450:440–6 Available from: http://www.sciencedirect.com/science/article/pii/S0376738813007734.

    Article  CAS  Google Scholar 

Download references

Funding

This work received financial support from the Ministry of Science and Technology (MOST), Taiwan, Republic of China (R.O.C) and Institute of Environmental Engineering and Management (IEEM), National Taipei University of Technology (NTUT), Taiwan, under the grant number: 108-2221-E-027-077-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiao-Shing Chen.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindaraju, R., Chen, SS., Wang, LP. et al. Significance of Membrane Applications for High-Quality Biodiesel and Byproduct (Glycerol) in Biofuel Industries—Review. Curr Pollution Rep 7, 128–145 (2021). https://doi.org/10.1007/s40726-021-00182-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00182-8

Keywords

Navigation