Skip to main content
Log in

Analysis of a conservative fourth-order compact finite difference scheme for the Klein–Gordon–Dirac equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a conservative fourth-order compact finite difference scheme for the Klein–Gordon–Dirac equation with periodic boundary conditions. Based on matrix knowledge, we convert the point-wise form of the proposed compact scheme into equivalent vector form and analyze its conservative and convergence properties. We prove that the new scheme conserves the total mass and energy in the discrete level and the convergence rate of the scheme, without any restrictions on the grid ratio, is at the order of \(O(h^4 +\tau ^2)\) in \(l^\infty \)-norm, where h and \(\tau \) are spatial and temporal steps, respectively. The techniques for error analysis include the energy method and the mathematical induction. The numerical experiments are carried out to confirm our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bachelot A (1989) Global existence of large amplitude solutions for Dirac–Klein–Gordon systems in Minkowski space. Springer, Berlin

    MATH  Google Scholar 

  • Bao W, Cai Y (2013a) Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet Relat Model 6:1–135

    MathSciNet  MATH  Google Scholar 

  • Bao W, Cai Y (2013b) Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation. Math Comput 82:99–128

    MathSciNet  MATH  Google Scholar 

  • Bao W, Dong X (2012) Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime. Numer Math 120:189–229

    MathSciNet  MATH  Google Scholar 

  • Bao W, Li X (2004) An efficient and stable numerical method for the Maxwell–Dirac system. J Comput Phys 199:663–687

    MathSciNet  MATH  Google Scholar 

  • Bao W, Yang L (2007) Efficient and accurate numerical methods for the Klein–Gordon–Schrödinger equations. J Comput Phys 225:1863–1893

    MathSciNet  MATH  Google Scholar 

  • Bao W, Cai Y, Jia X, Yin J (2016) Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime. Sci China Math 59:1461–1494

    MathSciNet  MATH  Google Scholar 

  • Bao W, Cai Y, Jia X, Tang Q (2017) Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime. J Sci Comput 71:1094–1134

    MathSciNet  MATH  Google Scholar 

  • Bournaveas N (1999) Local existence of energy class solutions for the Dirac–Klein–Gordon equations. Commun Partial Differ Equ 24:1167–1193

    MathSciNet  MATH  Google Scholar 

  • Bournaveas N (2001) Low regularity solutions of the Dirac–Klein–Gordon equations in two space dimensions. Commun Partial Differ Equ 26:1345–1366

    MathSciNet  MATH  Google Scholar 

  • Cai J, Liang H (2012) Explicit multisymplectic Fourier pseudospectral scheme for the Klein–Gordon–Zakharov equations. Chin Phys Lett 29:1028–1032

    Google Scholar 

  • Cai Y, Yi W (2018) Error estimates of finite difference time domain methods for the Klein–Gordon–Dirac system in the nonrelativistic limit regime. Commun Math Sci 16:1325–1346

    MathSciNet  MATH  Google Scholar 

  • Chadam JM, Glassey RT (1974) On certain global solutions of the Cauchy problem for the (classical) coupled Klein–Gordon–Dirac equations in one and three space dimensions. Arch Ration Mech Anal 54:223–237

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Taleei A (2012) Numerical solution of the Yukawa-coupled Klein-Gordon-Schrödinger equations via a Chebyshev pseudospectral multidomain method. Appl Math Model 36:2340–23492349

    MathSciNet  MATH  Google Scholar 

  • Esteban MJ, Georgiev V, Sére E (1996) Bound-state solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac systems. Lett Math Phys 38:217–220

    MathSciNet  MATH  Google Scholar 

  • Fang YF (2004) A direct proof of global existence for the Dirac–Klein–Gordon equations in one space dimension. Taiwan J Math 8:33–41

    MathSciNet  MATH  Google Scholar 

  • Gao G, Sun Z (2011) A compact finite difference scheme for the fractional sub-diffusion equations. J Comput Phys 230:586–595

    MathSciNet  MATH  Google Scholar 

  • Gao Z, Xie S (2011) Forth-order alternating direction implicit compact finite difference schemes for two-dimensional Schröinger equations. Appl Numer Math 61:593–614

    MathSciNet  MATH  Google Scholar 

  • Gopaul A, Bhuruth M (2006) Analysis of a fourth-order scheme for a three-dimensional convection–diffusion model problem. SIAM J Sci Comput 28:2075–2094

    MathSciNet  MATH  Google Scholar 

  • Gustafsson B, Mossberg E (2004) Time compact high order difference methods for wave propagation. SIAM J Sci Comput 26:259–271

    MathSciNet  MATH  Google Scholar 

  • Gustafsson B, Wahlund P (2004) Time compact difference methods for wave propagation in discontinuous media. SIAM J Sci Comput 26:272–293

    MathSciNet  MATH  Google Scholar 

  • Hairer E (2010) Energy-preserving variant of collocation methods. JNAIAM 5:73–84

    MathSciNet  MATH  Google Scholar 

  • Hammer R, Pötz W, Arnold A (2014) A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in (1+1)D. J Comput Phys 256:728–747

    MathSciNet  MATH  Google Scholar 

  • Holte JM (2009) Discrete gronwall lemma and applications. MAA North Central Section Meeting at UND

  • Hong J, Li C (2006) Multi-symplectic Runge–Kutta methods for nonlinear Dirac equations. J Comput Phys 211:448–472

    MathSciNet  MATH  Google Scholar 

  • Huang Z, Jin S, Markowich PA, Sparber C, Zheng C (2005) A time-splitting spectral scheme for the Maxwell–Dirac system. J Comput Phys 208:761–789

    MathSciNet  MATH  Google Scholar 

  • Jiménez S, Vázquez L (1990) Analysis of four numerical schemes for a nonlinear Klein–Gordon equation. Appl Math Comput 35:61–94

    MathSciNet  MATH  Google Scholar 

  • Kalita JC, Dalal DC, Dass AK (2002) A class of higher order compacts chemes for the unsteady two-dimensional convection–diffusion equation with variable convection coefficients. Int J Numer Methods Fluids 38:1111–1131

    MATH  Google Scholar 

  • Li J, Gao Y (2019) Energy-preserving trigonometrically-fitted continuous stage Runge–Kutta–Nyström methods for oscillatory Hamiltonian systems. Numer Algorithms 81:1379–1401

    MathSciNet  MATH  Google Scholar 

  • Li S, Li X (2018) High-order compact methods for the nonlinear Dirac equation. Comput Appl Math 37:6483–6498

    MathSciNet  MATH  Google Scholar 

  • Li J, Wang T (2021) Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. Appl Numer Math 162:150–170

    MathSciNet  MATH  Google Scholar 

  • Li J, Wu X (2019) Energy-preserving continuous stage extended Runge–Kutta–Nyström methods for oscillatory Hamiltonian systems. Appl Numer Math 145:469–487

    MathSciNet  MATH  Google Scholar 

  • Machihara S, Omoso T (2007) The explicit solutions to the nonlinear Dirac equation and Dirac–Klein–Gordon equation. Ric Mat 56:19–30

    MathSciNet  MATH  Google Scholar 

  • Miyatake Y, Butcher JC (2016) Characterization of energy-preserving methods and the construction of parallel integrators for Hamiltonian systems. SIAM J Numer Anal 54:1993–2013

    MathSciNet  MATH  Google Scholar 

  • Pachpatte BG (2002) Inequalities for finite difference equations. Marcel Dekker, New York

    MATH  Google Scholar 

  • Pan X, Zhang L (2013) High-order linear compact conservative method for the nonlinear Schrödinger equation coupled with the nonlinear Klein-Gordon equation. Nonlinear Anal 92:108–118

    MathSciNet  MATH  Google Scholar 

  • Pascual PJ, Jiménezz S, Vázquez L (1995) Numerical simulations of a nonlinear Klein–Gordon model and applications. Springer, Berlin

    Google Scholar 

  • Selberg S, Tesfahun A (2006) Low regularity well-posedness of the Dirac–Klein–Gordon equations in one space dimension. Commun Contemp Math 10:347–353

    MathSciNet  MATH  Google Scholar 

  • Sun Q, Zhang L, Wang S, Hu X (2013) A conservative compact difference scheme for the coupled Klein–Gordon–Schrödinger equation. Numer Methods Partial Differ Equ 29:1657–1674

    MATH  Google Scholar 

  • Wang T (2012) Convergence of an eighth-order compact difference scheme for the nonlinear Schrödinger equation. Adv Numer Anal 913429:24

    MATH  Google Scholar 

  • Wang T (2014) Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrödinger equation. J Math Anal Appl 412:155–167

    MathSciNet  MATH  Google Scholar 

  • Wang T, Guo B (2011) Unconditional convergence of two conservative compact difference schemes for non-linear Schrödinger equation in one dimension. Sci Sin Math 41:207–233 (in Chinese)

    Google Scholar 

  • Wang B, Wu X (2020) Exponential collocation methods based on continuous finite element approximations for efficiently solving the cubic Schrodinger equation. Numer Methods Partial Differ Equ 36:1735–1757

    MathSciNet  Google Scholar 

  • Wang B, Wu X (2021) A long-term numerical energy-preserving analysis of symmetric and/or symplectic extended RKN integrators for efficiently solving highly oscillatory Hamiltonian systems. BIT. https://doi.org/10.1007/s10543-021-00846-3

    Article  Google Scholar 

  • Wang T, Guo B, Xu Q (2013) Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J Comput Phys 243:299–382

    MATH  Google Scholar 

  • Xu J, Shao S, Tang H, Wei D (2015) Multi-hump solitary waves of a nonlinear Dirac equation. Commun Math Sci 13:1219–1242

    MathSciNet  MATH  Google Scholar 

  • Yi W, Cai Y (2020) Optimal error estimates of finite difference time domain methods for the Klein–Gordon–Dirac system. IMA J Numer Anal 40:1266–1293

    MathSciNet  MATH  Google Scholar 

  • Yi W, Ruan X, Su C (2019) Optimal resolution methods for the Klein–Gordon–Dirac system in the nonrelativistic limit regime. J Sci Comput 79:1907–1935

    MathSciNet  MATH  Google Scholar 

  • Zhang Y, Sun Z, Zhao X (2012) Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J Numer Anal 50:1535–1555

    MathSciNet  MATH  Google Scholar 

  • Zingg DW (2000) Comparison of high-accuracy finite-difference methods for linear wave propagation. SIAM J Sci Comput 22:476–502

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable suggestions, which help improve this paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Li.

Additional information

Communicated by Jose Alberto Cuminato.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported in part by Hebei Natural Science Foundation of China (no. A2014205136), the National Natural Science Foundation of China (no. 11571181) and the Natural Science Foundation of Jiangsu Province (No. BK20171454).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, T. Analysis of a conservative fourth-order compact finite difference scheme for the Klein–Gordon–Dirac equation. Comp. Appl. Math. 40, 114 (2021). https://doi.org/10.1007/s40314-021-01508-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01508-4

Keywords

Mathematics Subject Classification (2010)

Navigation