Skip to main content
Log in

Response of angled and tapered liquid injectors to passing detonation fronts at high operating pressures

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Angled and tapered injectors have been subjected to detonation fronts at high-pressure conditions and analyzed using high-speed videos. A total of 846 tests were conducted to characterize refill times and back-flow distances of nine different injector geometries. Water was used as the working fluid, and ethylene–oxygen was utilized to produce the detonation wave. Experiments were performed at two different vessel pressure settings (approximately 4 and 6.8 atm). Refill time data were normalized to obtain a general trend for transient response of liquid injectors to provide a predictive mechanism for injector designers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Heister, S.D., Stechmann, D.P., Lim, D.: Survey of rotating detonation wave combustor technology and potential rocket vehicle applications. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2014-3902 (2014). https://doi.org/10.2514/6.2014-3902

  2. Kailasanath, K.: Review of propulsion applications of detonation waves. AIAA J. 38(9), 1698–1708 (2000). https://doi.org/10.2514/2.1156

    Article  Google Scholar 

  3. Lu, F.K., Braun, E.M.: Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. J. Propuls. Power 30(5), 1125–1142 (2014). https://doi.org/10.2514/1.B34802

    Article  Google Scholar 

  4. Wang, Y.H., Le, J.: How multiple rotating detonation waves are produced. 22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference, AIAA Paper 2018-5202 (2018). https://doi.org/10.2514/6.2018-5202

  5. Anand, V., St. George, A., Driscoll, R., Gutmark, E.: Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor. Exp. Ther. Fluid Sci. 70, 408–416 (2016). https://doi.org/10.1016/j.expthermflusci.2015.10.007

    Article  Google Scholar 

  6. Anand, V., St-George, A., Jodele, J., Knight, E., Gutmark, E.: Black-box modeling of rotating detonation combustors and their injector plena coupling. AIAA J. 58(12), 5095–5106 (2019). https://doi.org/10.2514/1.J058263

    Article  Google Scholar 

  7. Naples, A., Hoke, J., Schauer, F.: Experimental investigation of a rotating detonation engine injector temporal response. 53rd AIAA Aerospace Sciences Meeting, AIAA Paper 2015-1104 (2015). https://doi.org/10.2514/6.2015-1104

  8. Bedick, C., Sisler, A., Ferguson, D.H., Strakey, P.: Development of a lab-scale experimental testing platform for rotating detonation engine inlets. 55th AIAA Aerospace Sciences Meeting, AIAA Paper 2017-0785 (2017). https://doi.org/10.2514/6.2017-0785

  9. Schwer, D., Corrigan, A., Taylor, B., Kailasanath, K.: On reducing feedback pressure in rotating detonation engines. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2013-1178 (2013). https://doi.org/10.2514/6.2013-1178

  10. Mikoshiba, K., Sardeshmukh, S., Heister, S.: On the response of annular injectors to rotating detonation waves. Shock Waves 30, 29–40 (2020). https://doi.org/10.1007/s00193-019-00900-8

    Article  Google Scholar 

  11. Yao, S., Wang, J.: Numerical investigation of effects of fuel injection on rotating detonation engine. 51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2015-4192 (2015). https://doi.org/10.2514/6.2015-4192

  12. Nordeen, C., Schwer, D., Schauer, F., Hoke, J., Barber, T., Cetegen, B.: Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine. Shock Waves 26, 417–428 (2016). https://doi.org/10.1007/s00193-015-0570-7

    Article  Google Scholar 

  13. Cocks, P.A., Holley, A.T., Rankin, B.A.: High fidelity simulations of a non-premixed rotating detonation engine. 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-0125 (2016). https://doi.org/10.2514/6.2016-0125

  14. Gaillard, T., Davidenko, D., Dupoirieux, F.: Numerical simulation of a rotating detonation with a realistic injector designed for separate supply of gaseous hydrogen and oxygen. Acta Astronaut. 141, 64–78 (2017). https://doi.org/10.1016/j.actaastro.2017.09.011

    Article  Google Scholar 

  15. Bykovskii, F., Zhdan, S., Vedernikov, E.: Continuous spin detonations. J. Propuls. Power 22(6), 1204–1216 (2006). https://doi.org/10.2514/1.17656

    Article  Google Scholar 

  16. Kindracki, J.: Experimental research on rotating detonation in liquid fuel–gaseous air mixtures. Aerosp. Sci. Technol. 43, 445–453 (2015). https://doi.org/10.1016/j.ast.2015.04.006

    Article  Google Scholar 

  17. Lim, D., Humble, J., Heister, S.D.: Experimental testing of an rp-2-gox rotating detonation rocket engine. AIAA Scitech 2020 Forum, AIAA Paper 2020-0195 (2020). https://doi.org/10.2514/6.2020-0195

  18. Xue, S., Liu, H., Zhou, L., Yang, W., Hu, H., Yan, Y.: Experimental research on rotating detonation with liquid hypergolic propellants. Chin. J. Aeronaut. 31(12), 2199–2205 (2018). https://doi.org/10.1016/j.cja.2018.08.022

    Article  Google Scholar 

  19. Anderson, W., Heister, S.D., Hartsfield, C.: Experimental study of a hypergolically ignited liquid bipropellant rotating detonation rocket engine. AIAA Scitech 2019 Forum, AIAA Paper 2019-0474 (2019). https://doi.org/10.2514/6.2019-0474

  20. Lim, D., Heister, S.D., Stechmann, D., Kan, B.: Transient response of a liquid injector to a transverse pressure wave. Propulsion and Energy Forum, AIAA Paper 2015-3767 (2015). https://doi.org/10.2514/6.2015-3767

  21. Lim, D., Heister, S.D.: Transient response of a liquid injector to a transverse detonation wave at elevated initial pressure. 2018 AIAA Aerospace Sciences Meeting, AIAA Paper 2018-0632 (2018). https://doi.org/10.2514/6.2018-0632

  22. Lim, D., Celebi, H.F., Heister, S.D.: Transient response of a liquid injector to an ethylene–oxygen detonation wave. AIAA Scitech 2019 Forum, AIAA Paper 2019-1513 (2019). https://doi.org/10.2514/6.2019-1513

  23. Russo, R., King, P., Schauer, F., Thomas, L.: Characterization of pressure rise across a continuous detonation engine. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2011-6046 (2012). https://doi.org/10.2514/6.2011-6046

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Celebi.

Additional information

Communicated by E. Gutmark.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 6058 KB)

Supplementary material 2 (mp4 6149 KB)

Supplementary material 3 (mp4 6974 KB)

Supplementary material 4 (mp4 14295 KB)

Supplementary material 5 (mp4 8434 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celebi, H.F., Lim, D., Dille, K.J. et al. Response of angled and tapered liquid injectors to passing detonation fronts at high operating pressures. Shock Waves 31, 717–726 (2021). https://doi.org/10.1007/s00193-021-01010-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01010-0

Keywords

Navigation