Skip to main content
Log in

Nonlinear approximation in N-dimension with the help of summability methods

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In this paper, we approximate to functions in N-dimension by means of nonlinear integral operators of the convolution type. Our approximation is based on not only the uniform norm but also the variation semi-norm in Tonelli’s sense. We also study the rates of convergence. To get more general results we mainly use regular summability methods in the approximation. We construct some significant applications including the Cesàro approximation, the almost approximation, the rates of convergence based on certain summability methods. Furthermore, we display some graphical illustrations verifying the approximation and evaluate numerical computations giving approximation errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Angeloni, L., Vinti, G.: Convergence and rate of approximation for linear integral operators in \(\text{ BV}^{\varphi }\)-spaces in multidimensional setting. J. Math. Anal. Appl. 349, 317–334 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Angeloni, L., Vinti, G.: Convergence in variation and a characterization of the absolute continuity. Integral Trans. Spec. Funct. 26, 829–844 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angeloni, L., Vinti, G.: Convergence in variation and rate of approximation for nonlinear integral operators of convolution type. Results Math. 48, 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angeloni, L., Vinti, G.: Erratum to: Convergence in variation and rate of approximation for nonlinear integral operators of convolution type. Results Math. 57, 387–391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Angeloni, L., Vinti, G.: Variation and approximation in multidimensional setting for Mellin integral operators. New perspectives on approximation and sampling theory, 299–317, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2014

  6. Angeloni, L., Vinti, G.: Convergence in variation and a characterization of the absolute continuity. Integral Trans. Spec. Funct. 26(10), 829–844 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aslan, I.: Approximation by sampling type discrete operators, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69 (2020) no.1, 969–980

  8. Aslan, I., Duman, O.: A summability process on Baskakov-type approximation. Period. Math. Hungar. 72(2), 186–199 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aslan, I., Duman, O.: Summability on Mellin-type nonlinear integral operators. Integral Trans. Spec. Funct. 30(6), 492–511 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aslan, I., Duman, O.: Approximation by nonlinear integral operators via summability process. Math. Nachr. 293(3), 430–448 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aslan, I., Duman, O.: Characterization of absolute and uniform continuity. Hacet. J. Math. Stat. 49(5), 1550–1565 (2020)

    MathSciNet  Google Scholar 

  12. Atlihan, Ö.G., Orhan, C.: Summation process of positive linear operators. Comput. Math. Appl. 56, 1188–1195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bardaro, C., Butzer, P.L., Stens, R.L., Vinti, G.: Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals. Analysis 23, 299–340 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bardaro, C., Musielak, J., Vinti, G.: Nonlinear integral operators and applications, De Gruyter Series in Nonlinear Analysis and Applications, New York, Berlin, 9, (2003)

  15. Bardaro, C., Musielak, J., Vinti, G.: Nonlinear operators of integral type in some functional spaces. Collectanea Math. 48, 409–422 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Bardaro, C., Vinti, G.: On the order of modular approximation for nets of integral operators in modular Lipschitz classes. Funct. Approx. Comment. Math. 26, 139–154 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Bell, H.T.: \({\cal{A}}\)-summability, Dissertation. Lehigh University, Bethlehem (1971)

    Google Scholar 

  18. Bell, H.T.: Order summability and almost convergence. Proc. Am. Math. Soc. 38, 548–552 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bertero, M., Brianzi, P., Pike, E.: Super-resolution in confocal scanning microscopy. Inverse Prob. 3, 195–212 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boos, J.: Classical and modern methods in summability. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  21. Bose, N., Boo, K.: High-resolution image reconstruction with multisensors. Int. J. Imaging Syst. Technol. 9, 294–304 (1998)

    Article  Google Scholar 

  22. Butzer, P.L., Nessel, R.J.: Fourier analysis and approximation I. Academic Press, New York-London (1971)

    Book  MATH  Google Scholar 

  23. Cárdenas-Morales, D., Garrancho, P.: \({\cal{B}} \)-statistical \({\cal{A}}\)-summability in conservative approximation. Math. Inequal. Appl. 19(3), 923–936 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Cárdenas-Morales, D., Garrancho, P.: \({\cal{A}} \)-summability of sequences of linear conservative operators. Mathematical analysis, approximation theory and their applications, 463–482, Springer Optim. Appl., 111, Springer, (2016)

  25. Ford, N.J., Edwards, J.T., Frischmuth, K.: Qualitative behaviour of approximate solutions of some volterra integral equations with non-lipschitz nonlinearity, numerical analysis report 310. Manchester Centre for Computational Mathematics, Manchester (1997)

    Google Scholar 

  26. Freeden, W., Schreiner, M.: Orthogonal and nonorthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere. Constr. Approx. 14(4), 493–515 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gokcer, T.Y., Duman, O.: Approximation by max-min operators: a general theory and its applications. Fuzzy Sets Syst. 394, 146–161 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gonzalez, R., Woods, R.: Digital image processing. Addison-Wesley, Boston (1993)

    Google Scholar 

  29. Hansen, P.C.: Deconvolution and regularization with Topelitz matrices. Numer. Algorithms 29, 323–328 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hardy, G.H.: Divergent series. Oxford University Press, Oxford (1949)

    MATH  Google Scholar 

  31. Jurkat, W.B., Peyerimhoff, A.: Fourier effectiveness and order summability. J. Approx. Theory 4, 231–244 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jurkat, W.B., Peyerimhoff, A.: Inclusion theorems and order summability. J. Approx. Theory 4, 245–262 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kama, R.: Spaces of vector sequences dened by the \(f\)-statistical convergence and some characterizations of normed spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 2, paper no. 74, 9 pp

  34. Karakuş, M., Başar, F.: Vector valued multiplier spaces of \(f_{\lambda }\)-summability, completeness through \(c_{0}(X)\)-multiplier convergence and continuity and compactness of summing operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 169, 17 pp

  35. Khodabandehlou, J., Maghsoudi, S., Seoane-Sepúlveda, J. B.: Algebraic genericity and summability within the non-Archimedean setting, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 1, paper no. 21, 17 pp

  36. Knoop, H. B., Zhou, X. L.: The lower estimate for linear positive operators. I., Constr. Approx. 11 (1995), no.1, 53–66

  37. Kress, R.: Linear integral equations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  38. Lorentz, G.G.: A contribution to the theory of divergent sequences. Acta Math. 80, 167–190 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lu, Y., Shen, L., Xu, Y.: Integral equation models for image restoration: high accuracy methods and fast algorithms. Inverse Prob. 26, 1–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ng, K.: Michael, circulant preconditioners for convolution-like integral equations with higherorder quadrature rules. Electron. Trans. Numer. Anal. 5, 18–28 (1997)

    MathSciNet  MATH  Google Scholar 

  41. Mohapatra, R.N.: Quantitative results on almost convergence of a sequence of positive linear operators. J. Approx. Theory 20, 239–250 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  42. Radó, T.: Length and area, American Mathematical Society colloquium publications, vol. 30. American Mathematical Society, New York (1948)

    Google Scholar 

  43. Srivastava, H. M., Jena, B. B., Paikray, S. K.: Statistical probability convergence via the deferred Nörlund mean and its applications to approximation theorems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 3, paper no. 144, 14 pp

  44. Swetits, J.J.: On summability and positive linear operators. J. Approx. Theory 25, 186–188 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tonelli, L.: Su alcuni concetti dell’analisi moderna. Ann. Scuola Norm. Super. Pisa 11(2), 107–118 (1942)

    MathSciNet  MATH  Google Scholar 

  46. Vinti, C.: Perimetro-variazione. Ann. Sculo Norm. Sup. Pisa 18(3), 201–231 (1964)

    MathSciNet  MATH  Google Scholar 

  47. Turkun, C., Duman, O.: Modified neural network operators and their convergence properties with summability methods, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 3, paper no. 132, 18 pp

Download references

Acknowledgements

The authors would like to thank the anonymous reviewer(s) for providing insightful comments and reading the manuscript carefully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Aslan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, I., Duman, O. Nonlinear approximation in N-dimension with the help of summability methods. RACSAM 115, 105 (2021). https://doi.org/10.1007/s13398-021-01046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01046-y

Keywords

Mathematics Subject Classification

Navigation