Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 30, 2021

Solid state self-assembly and morphology of a rigid non-coded γ-amino acid inserted tripeptide

  • Arpita Dutta EMAIL logo , Suven Das , Purak Das , Suvendu Maity and Prasanta Ghosh

Abstract

A tripeptide Boc-L-Pro-m-ABA-Aib-OMe was synthesized where meta-aminobenzoic acid (m-ABA), a rigid non-coded γ-amino acid is placed as middle residue. Single crystal X-ray diffraction study indicates that the peptide self-assembles into helical motif through intermolecular hydrogen bonding interaction N–H···O, C–H···O, π···π interaction and van der Waals interaction. HR-TEM image reveals the formation of fibril in the solid state.


Corresponding author: Arpita Dutta, Department of Chemistry, Rishi Bankim Chandra Evening College, 24-Parganas (N), Naihati, 743165, India, E-mail

Funding source: SERB(DST)

Award Identifier / Grant number: TAR/2018/000228

Acknowledgement

AD acknowledges laboratory facilities at R. B. C. Evening College, Naihati.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: PD is grateful to SERB (DST), India for fellowship [No. TAR/2018/000228].

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Watson, J. D., Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738; https://doi.org/10.1038/171737a0.Search in Google Scholar

2. Whitesides, G. M., Boncheva, M. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4769–4774; https://doi.org/10.1073/pnas.082065899.Search in Google Scholar

3. Mattei, S., Ban, A., Picenoni, A., Leibundgut, M., Glockshuber, R., Boehringer, D. Structure of native glycolipoprotein filaments in honeybee royal jelly. Nat. Commun. 2020, 11, 6267; https://doi.org/10.1038/s41467-020-20135-x.Search in Google Scholar

4. Horne, W. S., Grossmann, T. N. Proteomimetics as protein-inspired scaffolds with defined tertiary folding patterns. Nat. Chem. 2020, 12, 331–337; https://doi.org/10.1038/s41557-020-0420-9.Search in Google Scholar

5. Lehn, J.‐M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 2007, 36, 151–160; https://doi.org/10.1039/b616752g.Search in Google Scholar

6. Ulijn, R. V., Smith, A. M. Designing peptide based nanomaterials. Chem. Soc. Rev. 2008, 37, 664–675; https://doi.org/10.1039/b609047h.Search in Google Scholar

7. Handelman, A., Beker, P., Amdursky, N., Rosenman, G. Physics and engineering of peptide supramolecular nanostructures. Phys. Chem. Chem. Phys. 2012, 14, 6391–6408; https://doi.org/10.1039/c2cp40157f.Search in Google Scholar

8. Yuan, C., Ji, W., Xing, R., Li, J., Gazit, E., Yan, X. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 2019, 3, 567–588; https://doi.org/10.1038/s41570-019-0129-8.Search in Google Scholar

9. Sharma, A., Tiwari, P., Konar, A. D. The dominant role of side chains in supramolecular double helical organisation in synthetic tripeptides. J. Mol. Struct. 2018, 1161, 44–54; https://doi.org/10.1016/j.molstruc.2018.01.018.Search in Google Scholar

10. Sarkar, R., Debnath, M., Maji, K., Haldar, D. Solvent assisted structural diversity: supramolecular sheet and double helix of a short aromatic γ-peptide. RSC Adv. 2015, 5, 76257–76262; https://doi.org/10.1039/c5ra12831e.Search in Google Scholar

11. Dutta, A., Das, S., Das, P., Maity, S., Ghosh, P. Fibril formation through self-assembly of a simple glycine derivative and X-ray diffraction study. Z. Kristallogr. 2020, 235, 47–51; https://doi.org/10.1515/zkri-2019-0062.Search in Google Scholar

12. Levin, A., Hakala, T., Schnaider, L., Lopes Bernardes, G., Gazit, E., Knowles, T. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634; https://doi.org/10.1038/s41570-020-0215-y.Search in Google Scholar

13. Ekiz, M. S., Cinar, G., Khalily, M. A., Guler, M. O. Self-assembled peptide nanostructures for functional materials. Nanotechnology 2016, 27, 402002; https://doi.org/10.1088/0957-4484/27/40/402002.Search in Google Scholar

14. Das, A. K., Gavel, P. K. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. Soft Matter 2020, 16, 10065–10095; https://doi.org/10.1039/d0sm01136c.Search in Google Scholar

15. Moore, A. N., Hartgerink, J. D. Self-Assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration. Acc. Chem. Res. 2017, 50, 714–722; https://doi.org/10.1021/acs.accounts.6b00553.Search in Google Scholar

16. Dutt, A., Drew, M. G. B., Pramanik, A. β-Sheet mediated self-assembly of dipeptides of ω-amino acids and remarkable fibrillation in the solid state. Org. Biomol. Chem. 2005, 3, 2250–2254; https://doi.org/10.1039/b504112k.Search in Google Scholar

17. Dutta, A., Drew, M. G. B., Pramanik, A. Design of a turn-linker-turn foldamer by incorporating meta-amino benzoic acid in the middle of a helix forming hexapeptide sequence: a helix breaking approach. J. Mol. Struct. 2009, 930, 55–59; https://doi.org/10.1016/j.molstruc.2009.04.037.Search in Google Scholar

18. Dutta, A., Drew, M. G. B., Pramanik, A. Amyloid‐like fibrillogenesis through supramolecular helix‐mediated self‐assembly of tetrapeptides containing non‐coded α‐aminoisobutyric acid (Aib) and 3‐aminobenzoic acid (m‐ABA). Helv. Chim. Acta 2010, 93, 1025–1037; https://doi.org/10.1002/hlca.200900335.Search in Google Scholar

19. Koley, P., Drew, M. G. B., Pramanik, A. Salts responsive nanovesicles through π-stacking induced self-assembly of backbone modified tripeptides. J. Nanosci. Nanotechnol. 2011, 11, 6747–6756; https://doi.org/10.1166/jnn.2011.4219.Search in Google Scholar

20. Maity, S. K., Maity, S., Jana, P., Haldar, D. Supramolecular double helix from capped γ-peptide. Chem. Commun. 2012, 48, 711–713; https://doi.org/10.1039/c1cc15570a.Search in Google Scholar

21. Kar, S., Tai, Y. Marked difference in self-assembly, morphology, and cell viability of positional isomeric dipeptides generated by reversal of sequence. Soft Matter 2015, 11, 1345–1351; https://doi.org/10.1039/c4sm02537g.Search in Google Scholar

22. Vardhishna, M. V., Srinivasulu, G., Harikrishna, A., Thakur, S. S., Chatterjee, B. Simultaneous occurrence of nanospheres and nanofibers self‐assembled from achiral tripeptides. ChemistryOpen 2019, 8, 266–270; https://doi.org/10.1002/open.201800258.Search in Google Scholar

23. Mishra, A., Panda, J. J., Basu, A., Chauhan, V. S. Stimuli responsive self-assembled hydrogel of a low molecular weight free dipeptide with potential for tunable drug delivery. Langmuir 2008, 24, 4571–4576; https://doi.org/10.1021/la7034533.Search in Google Scholar

24. Antonietti, M., Forster, S. Vesicles and liposomes: a self‐assembly principle: beyond lipids. Adv. Mater. 2003, 15, 1323–1333; https://doi.org/10.1002/adma.200300010.Search in Google Scholar

25. Bodanszky, M., Bodanszky, A. The Practice of Peptide Synthesis; Spinger-Verlag: New York, 1984; pp. 1–282.10.1007/978-3-642-96835-8Search in Google Scholar

26. Bruker. Smart, Saint and Sadabs; Bruker AXS Inc.: Madison, 2000.Search in Google Scholar

27. Sheldrick, G. M. A short history of Shelx. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

28. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

29. Farrugia, L. J. WinGX and Ortep for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2021-2006).


Received: 2021-01-18
Accepted: 2021-03-12
Published Online: 2021-03-30
Published in Print: 2021-04-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2021-2006/html
Scroll to top button