Skip to main content
Log in

Application of LIBS technology for quantification of Er3+ ions in tellurite glasses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Er3+ doped tellurite glasses have been the subject of current research for potential applications in photonics. When compared with other glasses, these materials exhibit some valuable properties in the field of optical fiber amplification or laser radiation generation, such as a high refractive index, a broad photoluminescence band around 1550 nm, high chemical and thermal stability, high infrared transmittance, low phonon energies, and relatively high stimulated emission cross-sections. However, the optical performance of these materials can be diminished when they are exposed to a high amount of radiation. One possible explanation for the optical gain loss could be associated with the reduction of the Er3+ ions density within the matrix. In this sense, having a technique that allows knowing the Er3+ ions concentration within a tellurite vitreous matrix in real time, is highly relevant for the field of optics. In this work, Er3+ doped tellurite glasses were fabricated by the melt quenching technique. Laser Induced Breakdown Spectroscopy was used to identify and determine the Er3+ ions concentration, measurement and calibration routines that guarantee the implementation of this technique for this purpose, were performed first. The structural and optical properties of the tellurite glass samples were also studied and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.J. Leal, R. Narro-García, J.P. Flores-De los Ríos, N. Gutierrez-Mendez, V.H. Ramos-Sánchez, J.R. González-Castillo, E. Rodríguez, Effect of TiO2 on the thermal and optical properties of Er3+/Yb3+ co-doped tellurite glasses for optical sensor. J. Lumin. 208, 342–349 (2019)

    Article  Google Scholar 

  2. M. Haouari, A. Maaoui, N. Saad, A. Bulou, Optical temperature sensing using green emissions of Er3+ doped fluoro-tellurite glass. Sens. Actuators A. 261, 235–242 (2017)

    Article  Google Scholar 

  3. T. Castro, D. Manzani, S.J.L. Ribeiro, Up-conversion mechanisms in Er3+-doped fluoroindate glasses under 1550 nm excitation for enhancing photocurrent of crystalline silicon solar cell. J. Lumin. 200, 260–264 (2018)

    Article  Google Scholar 

  4. J.S. Wang, E.M. Vogel, E. Snitzer, Tellurite glass: a new candidate for fiber devices. Opt. Mater. 3, 187–203 (1994)

    Article  ADS  Google Scholar 

  5. D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, Hoboken, 2013).

    Book  Google Scholar 

  6. A.W. Miziolek, V. Palleschi, I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  7. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, Trace element analysis in water by the laser-induced breakdown spectroscopy technique. Appl. Spectrosc. 51, 1102–1105 (1997)

    Article  ADS  Google Scholar 

  8. A. El-Hussein, A.K. Kassem, H. Ismail, M.A. Harith, Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies. Talanta 82, 495–501 (2010)

    Article  Google Scholar 

  9. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, C. Vallebona, Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis. Appl. Opt. 42, 6133–6137 (2003)

    Article  ADS  Google Scholar 

  10. D. Anglos, Laser-induced breakdown spectroscopy in art and archaeology. Appl. Spectrosc. 55, 186A-205A (2001)

    Article  ADS  Google Scholar 

  11. D.A. Cremers, R.C. Chinni, Laser-induced breakdown spectroscopy—capabilities and limitations. Appl. Spectrosc. Rev. 44, 457–506 (2009)

    Article  ADS  Google Scholar 

  12. D.W. Hahn, N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma—particle interactions: still-challenging issues within the analytical plasma community. Appl. Spectrosc. 64, 335–366 (2010)

    Article  ADS  Google Scholar 

  13. D. Alamelu, A. Sarkar, S.K. Aggarwal, Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution. Talanta 77, 256–261 (2008)

    Article  Google Scholar 

  14. J.-I. Yun, T. Bundschuh, V. Neck, J.-I. Kim, Selective determination of europium(III) oxide and hydroxide colloids in aqueous solution by laser-induced breakdown spectroscopy. Appl. Spectrosc. 55, 273–278 (2001)

    Article  ADS  Google Scholar 

  15. D. Menut, P. Fichet, J.-L. Lacour, A. Rivoallan, P. Mauchien, Micro-laser-induced breakdown spectroscopy technique: a powerful method for performing quantitative surface mapping on conductive and nonconductive samples. Appl. Opt. 42, 6063–6071 (2003)

    Article  ADS  Google Scholar 

  16. Y. Dwivedi, N. Thakur, S. Rai, Laser induced breakdown spectroscopy diagnosis of rare earth doped optical glasses. Appl. Opt. 49, C42–C48 (2010)

    Article  Google Scholar 

  17. P. Fichet, M. Tabarant, B. Salle, C. Gautier, Comparisons between LIBS and ICP/OES. Anal. Bioanal. Chem. 385, 338–344 (2006)

    Article  Google Scholar 

  18. T. Hussain, M.A. Gondal, Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis. J. Phys. Conf. Ser. 439, 12050 (2013)

    Article  Google Scholar 

  19. National Institute of Standards and Technology, [Online], https://physics.nist.gov/PhysRefData/ASD/lines_form.html

  20. U.S. Army Research Laboratory, [Online], https://www.arl.army.mil/www/default.cfm?page=250

  21. H. Hegazy, E.A. Abdel-Wahab, F.M. Abdel-Rahim, S.H. Allam, A.M.A. Nossair, Laser-induced breakdown spectroscopy: technique, new features, and detection limits of trace elements in Al base alloy. Appl. Phys. B. 115, 173–183 (2014)

    Article  ADS  Google Scholar 

  22. E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches. Spectrochim. Acta Part B 57, 1115–1130 (2002)

    Article  ADS  Google Scholar 

  23. K. Pach-Zawada, E. Golis, P. Pawlik, K. Kotynia, R. Miedziński, J. Filipecki, The effect of erbium ions doping on selected magneto-optical properties in tellurite glasses. Phys. B Condensed Matter. 562, 36–41 (2019)

    Article  ADS  Google Scholar 

  24. K. Siva Rama Krishna Reddy, K. Swapna, M. Venkateswarlu, S. Mahamuda, A.S. Rao, Thermal, up-conversion and near-infrared luminescence studies of erbium ions doped alkaline-earth boro tellurite glasses. Solid State Sci. 97, 106016 (2019)

    Article  Google Scholar 

  25. L. Liu, Z. Sun, C. Ma, R. Tao, J. Zhang, H. Li, E. Zhao, Highly sensitive and accurate optical thermometer through Er doped tellurite glasses. Mater. Res. Bull. 105, 306–311 (2018)

    Article  Google Scholar 

  26. Y. Li, C. Ke, X. Liu, F. Gou, X. Duan, Y. Zhao, Analysis liquid lithium corrosion resistance of Er2O3 coating revealed by LIBS technique. Fusion Eng. Des. 136, 1640–1646 (2018)

    Article  Google Scholar 

  27. K.M. Abedin, A.F.M.Y. Haider, M.A. Rony, Z.H. Khan, Identification of multiple rare earths and associated elements in raw monazite sands by laser-induced breakdown spectroscopy. Opt. Laser Technol. 43, 45–49 (2011)

    Article  ADS  Google Scholar 

  28. C. Barnett, E. Cahoon, J.R. Almirall, Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy. Spectrochim. Acta, Part B 63, 1016–1023 (2008)

    Article  ADS  Google Scholar 

  29. V.K. Unnikrishnan, R. Nayak, P. Devangad, M.M. Tamboli, C. Santhosh, G.A. Kumar, D.K. Sardar, Calibration based laser-induced breakdown spectroscopy (LIBS) for quantitative analysis of doped rare earth elements in phosphors. Mater. Lett. 107, 322–324 (2013)

    Article  Google Scholar 

  30. D. Jijón, C. Costa, Pencil lead scratches on steel surfaces as a substrate for LIBS analysis of dissolved salts in liquids. J. Phys. Conf. Ser. 274, 12077 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Mexican founding agency Consejo Nacional de Ciencia y Tecnología (CONACyT) under projects 183728 and 183321. Authors also acknowledge the financial support from Instituto Politécnico Nacional under projects SIP2018-0900 and SIP2019-66519. E. Rodríguez acknowledges support from COFAA and EDI of IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Roberto González-Castillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frías-Sánchez, A.K., Leal, J.J., González-Castillo, J.R. et al. Application of LIBS technology for quantification of Er3+ ions in tellurite glasses. Appl. Phys. B 127, 64 (2021). https://doi.org/10.1007/s00340-021-07613-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07613-w

Navigation