Skip to main content
Log in

The Chern–Ricci flow on primary Hopf surfaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The Hopf surfaces provide a family of minimal non-Kähler surfaces of class VII on which little is known about the Chern–Ricci flow. We use a construction of Gauduchon–Ornea for locally conformally Kähler metrics on primary Hopf surfaces of class 1 to study solutions of the Chern–Ricci flow. These solutions reach a volume collapsing singularity in finite time, and we show that the metric tensor satisfies a uniform upper bound, supporting the conjecture that the Gromov-Hausdorff limit is isometric to a round\(S^1\). Uniform \(C^{1+\beta }\) estimates are also established for the potential. Previous results had only been known for the simplest examples of Hopf surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The primary Hopf surfaces consist of both those of class 1, and those of class 0 which are defined as quotients of \(\mathbb C^2 {\setminus } \{0\}\) of the form \((z_1,z_2) \mapsto (\beta ^m z_1 + \lambda z_2^m, \beta z_2)\) for some positive integer m and \(\beta ,\lambda \in \mathbb C\) with \(1 < |\beta |\) and \(\lambda \ne 0\).

References

  1. Barth, W., Hulek, K., Peters, C., van de Ven, A.: Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics, vol. 4, 2 edn. Springer, Berlin (2004)

  2. Bogomolov, F.A.: Surfaces of class VII\(_0\) and affine geometry. Izv. Akad. Nauk SSSR Ser. Mat. 46(4), 710–761 (1982)

    MathSciNet  Google Scholar 

  3. Cao, H.D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math 81(2), 359–372 (1985)

    Article  MathSciNet  Google Scholar 

  4. Chen, X.X., Wang, B.: Kähler–Ricci flow on Fano manifolds (I). J. Eur. Math. Soc. (JEMS) 14(6), 2001–2038 (2012)

    Article  MathSciNet  Google Scholar 

  5. Fang, S., Tosatti, V., Weinkove, B., Zheng, T.: Inoue surfaces and the Chern–Ricci flow. J. Funct. Anal. 271(11), 3162–3185 (2016)

    Article  MathSciNet  Google Scholar 

  6. Feldman, M., Ilmanen, T., Knopf, D.: Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons. J. Differ. Geom. 65(2), 169–209 (2003)

    Article  Google Scholar 

  7. Gauduchon, P.: Le théoreme de l’excentricité nulle. C. R. Acad. Sci. Paris 285, 387–390 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Gauduchon, P.: La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984)

    Article  MathSciNet  Google Scholar 

  9. Gauduchon, P., Ornea, L.: Locally conformally Kähler metrics on Hopf surfaces. Ann. Inst. Fourier (Grenoble) 48(4), 1107–1127 (1998)

    Article  MathSciNet  Google Scholar 

  10. Gill, M.: Convergence of the parabolic complex Monge–Ampère equation on compact Hermitian manifolds. Commun. Anal. Geom. 19(2), 277–303 (2011)

    Article  Google Scholar 

  11. Gill, M., Smith, D.J.: The behavior of Chern scalar curvature under Chern–Ricci flow. Proc. Am. Math. Soc. 143(11), 4875–83 (2013)

    Article  MathSciNet  Google Scholar 

  12. Harvey, R., Blaine Lawson, H.: An intrinsic characterization of Kähler manifolds. Invent. Math. 74(2), 169–198 (1983)

    Article  MathSciNet  Google Scholar 

  13. Kodaira, K.: Complex structures on \(S^1 \times S^3\). Proc. Natl. Acad. Sci. USA 55, 240–243 (1966)

    Article  Google Scholar 

  14. Kodaira, K.: On the structure of compact complex analytic surfaces. II. Am. J. Math. 88(3), 682–721 (1966)

    Article  MathSciNet  Google Scholar 

  15. Lee, H.C.: A kind of even dimensional differential geometry and its application to exterior calculus. Am. J. Math. 65(3), 433–438 (1943)

    Article  MathSciNet  Google Scholar 

  16. Li, J., Yau, S.-T., Zheng, F.: On projectively flat Hermitian manifolds. Commun. Anal. Geom. 2, 103–109 (1994)

    Article  MathSciNet  Google Scholar 

  17. Liu, K., Yang, X.: Geometry of Hermitian manifolds. Int. J. Math. 23(6), 1250055 (2012)

    Article  MathSciNet  Google Scholar 

  18. Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Kähler–Ricci flow and the \(\bar{\partial }\) operator on vector fields. J. Differ. Geom. 81(3), 631–647 (2009)

    Article  Google Scholar 

  19. Phong, D.H., Sturm, J.: On stability and the convergence of the Kähler–Ricci flow. J. Differ. Geom. 72(1), 149–168 (2006)

    Article  Google Scholar 

  20. Song, J., Tian, G.: The Kähler–Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170(3), 609–653 (2007)

    Article  MathSciNet  Google Scholar 

  21. Song, J., Tian, G.: Canonical measures and Kähler–Ricci flow. J. Am. Math. Soc 25, 303–353 (2012)

    Article  Google Scholar 

  22. Song, J., Tian, G.: The Kähler–Ricci flow through singularities. Invent. Math. 207(2), 519–595 (2017)

    Article  MathSciNet  Google Scholar 

  23. Song, J., Weinkove, B.: The Kähler–Ricci flow on Hirzebruch surfaces. J. Reine Angew. 659, 141–168 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Song, J., Weinkove, B.: Contracting exceptional divisors by the Kähler–Ricci flow. Duke Math. J. 162(2), 367–415 (2011)

    MATH  Google Scholar 

  25. Song, J., Weinkove, B.: An introduction to the Kähler–Ricci flow. In: Boucksom, S., Eyssidieux, P., Guedj, V. (eds.), An Introduction to the Kähler–Ricci Flow, Lecture Notes in Math., vol. 2086, pp. 89–188. Springer, Heidelberg (2013)

  26. Song, J., Weinkove, B.: Contracting exceptional divisors by the Kähler–Ricci flow. II. Proc. Lond. Math. Soc. 108(6), 1529–1561 (2014)

    Article  MathSciNet  Google Scholar 

  27. Song, J., Yuan, Y.: Metric flips with Calabi ansatz. Geom. Funct. Anal. 22(2), 240–265 (2012)

    Article  MathSciNet  Google Scholar 

  28. Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. IMRN 16, 3101–3133 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Streets, J., Tian, G.: Hermitian curvature flow. J. Eur. Math. Soc. (JEMS) 13(3), 601–634 (2011)

    Article  MathSciNet  Google Scholar 

  30. Streets, J., Tian, G.: Regularity results for pluriclosed flow. Geom. Topol. 17(4), 2389–2429 (2013)

    Article  MathSciNet  Google Scholar 

  31. Székelyhidi, G.: The Kähler–Ricci flow and K-polystability. Am. J. Math. 132(4), 1077–1090 (2010)

    Article  Google Scholar 

  32. Teleman, A.: Projectively flat surfaces and Bogomolov’s theorem on class \(vii_0\)-surfaces. Int. J. Math. 5, 253–264 (1994)

    Article  Google Scholar 

  33. Teleman, A.: Donaldson theory on non-Kählerian surfaces and class VII surfaces with \(b_2=1\). Invent. Math. 162(3), 493–521 (2005)

    Article  MathSciNet  Google Scholar 

  34. Tian, G.: New results and problems on the Kähler–Ricci flow. Astérisque No. 322, 71–92 (2008)

    MATH  Google Scholar 

  35. Tian, G., Zhang, Z.: On the Kähler–Ricci flow on projective manifolds of general type. Chi. Ann. Math. 27(2), 179–192 (2006)

    Article  Google Scholar 

  36. Tosatti, V.: Kähler–Ricci flow on stable Fano manifolds. J. Reine. Angew. Math. 640, 2010 (2010)

    MATH  Google Scholar 

  37. Tosatti, V., Weinkove, B.: The complex Monge–Ampère equation on compact Hermitian manifolds. J. Am. Math. Soc. 23(4), 1187–1195 (2010)

    Article  Google Scholar 

  38. Tosatti, V., Weinkove, B.: The Chern–Ricci flow on complex surfaces. Compos. Math. 149(12), 2101–2138 (2013)

    Article  MathSciNet  Google Scholar 

  39. Tosatti, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern–Ricci form. J. Differ. Geom. 99(1), 125–163 (2015)

    Article  MathSciNet  Google Scholar 

  40. Tosatti, V., Weinkove, B., Yang, X.: Käher-Ricci flow, Ricci-flat metrics and collapsing limits. Am. J. Math. 140(3) (2014)

  41. Tosatti, V., Weinkove, B., Yang, X.: Collapsing of the Chern–Ricci flow on elliptic surfaces. Math. Ann. 362(3–4), 1223–1271 (2015)

    Article  MathSciNet  Google Scholar 

  42. Tsuji, H.: Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281, 123–133 (1988)

    Article  MathSciNet  Google Scholar 

  43. Ustinovskiy, Y.: Hermitian curvature flow on complex homogeneous manifolds. arXiv:1706.07023

  44. Ustinovskiy, Y.: The Hermitian curvature flow on manifolds with non-negative Griffiths curvature. arXiv:1604.04813

  45. Vaisman, I.: Some curvature properties of locally conformally Kähler manifolds. Trans. Am. Math. Soc. 259(2), 439–447 (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

Research for this paper began at the American Institute of Mathematics workshop: Nonlinear PDEs in real and complex geometry in San Jose, CA August 2018. The author thanks AIM for their hospitality. The author also extends their thanks to Casey Kelleher, Valentino Tosatti, Yury Ustinovskiy, and Ben Weinkove for helpful discussions at the AIM workshop. The author was supported by the NSF grant RTG: Geometry and Topology at the University of Notre Dame.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Edwards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, G. The Chern–Ricci flow on primary Hopf surfaces. Math. Z. 299, 1689–1702 (2021). https://doi.org/10.1007/s00209-021-02735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02735-5

Navigation