Skip to main content
Log in

Numerical investigation of temperature span of magnetic refrigerator using geometric configuration of gadolinium based parallel plate regenerator

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this manuscript, a numerical investigation on the temperature gradient of a magnetic refrigerator using different geometric configurations of a parallel plate regenerator is presented. The parallel plate regenerator is made up of gadolinium (Gd) as a magnetocaloric material with rectangular channels. The parallel plate regenerator is modeled and numerically investigated for 3D conjugated fluid convection and conduction heat transfer using Ansys Fluent. Two piston-cylinder displacers drive water as the working fluid through the regenerator loop. The hot and cold end heat exchangers are treated with the ε-NTU method. The effect of changing the parallel plate regenerator’s dimensional parameters on temperature span is examined against the utilization factor of 0.1, keeping the regenerator’s porosity constant. The maximum temperature span is predicted by comparing simulated parallel plate magnetic regenerators for two diverse sets of dimensional parameters and surface areas is 36.5 K for magnetic field intensity of 0.8 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rodríguez-Muñoz and J. Belman-Flores, Review of diffusion- absorption refrigeration technologies, Renew. Sust. Energ. Rev., 30 (2014) 145–153.

    Article  Google Scholar 

  2. M. I. H. Khan, Conventional refrigeration systems using phase change material: a review, Int. J. Air-Conditioning and Refrig., 24 (2016) 1630007.

    Article  Google Scholar 

  3. J. Abdulateef, K. Sopian, M. Alghoul and M. Sulaiman, Review on solar-driven ejector refrigeration technologies, Renew. Sust. Energ. Rev., 13 (2009) 1338–1349.

    Article  Google Scholar 

  4. J. A. Barclay, Magnetic refrigeration: a review of a developing technology, Advances in Cryogenic Engineering (R. W. Fast Edition), Springer, 33 (1988) 719–731.

    Google Scholar 

  5. B. Yu, Q. Gao, B. Zhang, X. Meng and Z. Chen, Review on research of room temperature magnetic refrigeration, Int. J. Refrig., 26 (2003) 622–636.

    Article  Google Scholar 

  6. R. Bjørk, C. R. H. Bahl, A. Smith and N. Pryds, Review and comparison of magnet designs for magnetic refrigeration, Int. J. Refrig., 33 (2010) 437–448.

    Article  Google Scholar 

  7. C. Zimm, A. Jastrab, A. Sternberg, V. Pecharsky, K. Gschneidner, M. Osborne and I. Anderson, Description and performance of a near-room temperature magnetic refrigerator, Advances in Cryogenic Engineering (P. Kittel Edition), Springer, 43 (1998) 1759–1766.

    Article  Google Scholar 

  8. B. Monfared, R. Furberg and B. Palm, Magnetic vs. vaporcompression household refrigerators: a preliminary comparative life cycle assessment, Int. J. Refrig., 42 (2014) 69–76.

    Article  Google Scholar 

  9. J. R. Gómez, R. F. Garcia, A. D. M. Catoira and M. R. Gómez, Magnetocaloric effect: a review of the thermodynamic cycles in magnetic refrigeration, Renew. Sust. Energ. Rev., 17 (2013) 74–82.

    Article  Google Scholar 

  10. C. Aprea, A. Greco, A. Maiorino and C. Masselli, A comparison between different materials with mechanocaloric effect, Int. J. Heat Technol., 36 (2018) 801–807.

    Article  Google Scholar 

  11. M. H. Phan and S. C. Yu, Review of the magnetocaloric effect in manganite materials, J. Magn. Magn. Mater., 308 (2007) 325–340.

    Article  Google Scholar 

  12. V. K. Pecharsky and K. A. Gschneidner Jr., Magnetocaloric effect and magnetic refrigeration, J. Magn. Magn. Mater., 200 (1999) 44–56.

    Article  Google Scholar 

  13. K. K. Nielsen, C. R. H. Bahl, A. Smith, R. Bjørk, N. Pryds and J. Hattel, Detailed numerical modeling of a linear parallel-plate active magnetic regenerator, Int. J. Refrig., 32 (2009) 1478–1486.

    Article  Google Scholar 

  14. V. Pecharsky and K. Gschneidner Jr., Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2), J. Magn. Magn. Mater., 167 (1997) L179–L184.

    Article  Google Scholar 

  15. K. Gschneidner Jr. and V. Pecharsky, Thirty years of near room temperature magnetic cooling: where we are today and future prospects, Int. J. Refrig., 31 (2008) 945–961.

    Article  Google Scholar 

  16. A. Smaıli and R. Chahine, Thermodynamic investigations of optimum active magnetic regenerators, Cryogenics, 38 (1998) 247–252.

    Article  Google Scholar 

  17. P. V. Trevizoli, J. R. Barbosa Jr. and R. T. Ferreira, Experimental evaluation of a Gd-based linear reciprocating active magnetic regenerator test apparatus, Int. J. Refrig., 34 (2011) 1518–1526.

    Article  Google Scholar 

  18. B. Siddikov, B. Wade and D. Schultz, Numerical simulation of the active magnetic regenerator, Comput. Math. with Appl., 49 (2005) 1525–1538.

    Article  MathSciNet  Google Scholar 

  19. J. Dikeos, A. Rowe and A. Tura, Numerical analysis of an active magnetic regenerator (AMR) refrigeration cycle, AIP Conference Proceedings, American Institute of Physics (2006) 993–1000.

    Chapter  Google Scholar 

  20. K. Engelbrecht, G. Nelli and S. Klein, A numerical model of an active magnetic regenerator refrigeration system, Cryocoolers, Springer, 13 (2005) 471–480.

    Article  Google Scholar 

  21. T. F. Petersen, N. Pryds, A. Smith, J. Hattel, H. Schmidt and H. J. H. Knudsen, Two-dimensional mathematical model of a reciprocating room-temperature active magnetic regenerator, Int. J. Refrig., 31 (2008) 432–443.

    Article  Google Scholar 

  22. P. A. Oliveira, P. V. Trevizoli, J. R. Barbosa Jr. and A. T. Prata, A 2D hybrid model of the fluid flow and heat transfer in a reciprocating active magnetic regenerator, Int. J. Refrig., 35 (2012) 98–114.

    Article  Google Scholar 

  23. A. Rowe and A. Tura, Experimental investigation of a threematerial layered active magnetic regenerator, Int. J. Refrig., 29 (2006) 1286–1293.

    Article  Google Scholar 

  24. C. Aprea, A. Greco and A. Maiorino, Magnetic refrigeration: a promising new technology for energy saving, Int. J. Ambient Energ., 37 (2016) 294–313.

    Article  Google Scholar 

  25. C. Aprea, A. Greco, A. Maiorino and C. Masselli, Magnetic refrigeration: an eco-friendly technology for the refrigeration at room temperature, Journal of Physics: Conference Series, IOP Publishing (2015) 012026.

    Google Scholar 

  26. M. S. Kamran, J. Sun, Y. B. Tang, Y. G. Chen, J. H. Wu and H. S. Wang, Numerical investigation of room temperature magnetic refrigerator using microchannel regenerators, Appl. Therm. Eng., 102 (2016) 1126–1140.

    Article  Google Scholar 

  27. W. M. Kays and M. E. Crawford, Convective Heat and Mass Transfer, McGraw Hill, Inc., New York (1993).

    Google Scholar 

  28. Y. Cengel, Heat Transfer: A Practical Approach, 2nd Edition (2003) 420–422.

    Google Scholar 

Download references

Acknowledgments

This work is supported by the University of Engineering and Technology, Lahore, Pakistan, and the Higher Education Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ammar.

Additional information

Samia Sadaf is serving as a Lecturer in the Mechanical Engineering Department, Lahore Leads University, Pakistan. She received her B.Sc. degree from the University of Engineering & Technology Lahore, Pakistan. She has completed her Master’s degree in Mechanical Design Engineering from UET Lahore, Pakistan. Her research interests are computational fluid dynamics, magnetic refrigeration, and material sciences.

Muhammad Ammar is an Assistant Professor of the Department of Chemical Engineering Technology, Government College University, Faisalabad, Pakistan. He received his Ph.D. in Chemical Engineering from the University of the Chinese Academy of Sciences, Beijing, China. His research interests include metallic materials for heat transfer, energy storage, and heterogeneous catalysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadaf, S., Kamran, M.S., Qasim, M. et al. Numerical investigation of temperature span of magnetic refrigerator using geometric configuration of gadolinium based parallel plate regenerator. J Mech Sci Technol 35, 2219–2227 (2021). https://doi.org/10.1007/s12206-021-0438-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0438-y

Keywords

Navigation