Skip to main content
Log in

A volume of fluid simulation of the steady deformation and the drag of a single droplet in a flowing gas

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

A method is proposed to investigate the steady deformation and the drag of a single droplet in a flowing gas at a high Reynolds number. The volume of fluid (VOF) method is used to model the droplet surface structure. The direct numerical simulation (DNS) method is used to model the gas flow field. In order to avoid the effect of the droplet acceleration on the drag and reduce the computation cost, a body force is added to the droplet to make it fixed at a constant position. The body force is determined by using the Newton iteration procedure. The simulated droplet aspect ratio and the drag coefficient agree well with the published experimental data. Meanwhile, the sources of the drag are analyzed and the effect of the Reynolds number and the Weber numbers on the droplet deformation and the drag are studied. The drag mainly comes from the pressure difference between the droplet-leading zone and the trailing zone, and the turbulence wake would increase the drag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu Z., Jin H., Guo L. Investigation on the drag coefficient of supercritical water flow past sphere-particle at low Reynolds numbers [J]. Thermalence, 2017, 21(Suppl.1): 217–223.

    Article  Google Scholar 

  2. Huai W. X., Wang Z. W., Qian Z. D. et al. Numerical simulation of sandy bed erosion by 2D vertical jet [J]. Science China-Technological Sciences, 2011, 54(12): 3265–3274.

    Article  Google Scholar 

  3. Jin H., Wang H., Wu Z. et al. Numerical investigation of the effect of surface roughness on flow and heat transfer characteristics of single sphere particle in supercritical water [J]. Computers and Mathematics with Applications, 2021, 81: 562–572.

    Article  MathSciNet  Google Scholar 

  4. Masliyah J. H., Epstein N. Numerical study of steady flow past spheroids [J]. Journal of Fluid Mechanics, 1970, 44: 493–512.

    Article  Google Scholar 

  5. Reinhart A. Das verhalten fallender topfen [J]. Chemie Ingenieur Technik, 1964, 36(7): 740–746.

    Article  Google Scholar 

  6. Soni S. K., Kirar P. K., Kolhea P. et al. Deformation and breakup of droplets in an oblique continuous air stream [J]. International Journal of Multiphase Flow, 2020, 122: 103141.

    Article  Google Scholar 

  7. Helenbrook B. T., Edwards C. T. Quasi-steady deformation and drag of uncontaminated liquid drops [J]. International Journal of Multiphase Flow, 2002, 28(10): 1631–1657.

    Article  Google Scholar 

  8. Kékesi T., Amberg G., Prahl Wittberg L. Drop deformation and breakup [J]. International Journal of Multiphase Flow, 2014, 66: 1–10.

    Article  Google Scholar 

  9. Kékesi T., Amberg G., Prahl Wittberg L. Drop deformation and breakup in flows with shear [J]. Chemical Engineering Science, 2016, 140: 319–329.

    Article  Google Scholar 

  10. Jiao D., Jiao K., Zhang F. et al. Direct numerical simulation of droplet deformation in turbulent flows with different velocity profiles [J]. Fuel, 2019, 247: 302–314.

    Article  Google Scholar 

  11. Komrakova A., Shardt O., Eskin, D. et al. Lattice Boltzmann simulations of drop deformation and breakup [J]. International Journal of Multiphase Flow, 2014, 59: 24–43.

    Article  Google Scholar 

  12. Han J., Tryggvason G. Secondary breakup of axisymmetric liquids drops. II. Impulsive acceleration [J]. Physics of Fluids, 2001, 13(6): 1554–1563.

    MATH  Google Scholar 

  13. Wadhwa A., Abraham J. Hybrid compressible-incompressible numerical method for transient drop-gas flows [J]. AIAA Journal, 2005, 43(9): 1974–1983.

    Article  Google Scholar 

  14. Quan S., Schmidt D. P. Direct numerical study of a liquid droplet impulsively accelerated by gaseous flow [J]. Physics of Fluid, 2006, 18(10): 102103.

    Article  Google Scholar 

  15. Fakhari A., Rahimian M. H. Simulation of falling droplet by the lattice Boltzmann method [J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(7): 3046–30455.

    Article  Google Scholar 

  16. Fakhari A., Rahimian M. H. Investigation of deformation and breakup of a falling droplet using a multiplerelaxation time lattice Boltzmann method [J]. Computer and Fluids, 2011, 40(1): 156–171.

    Article  Google Scholar 

  17. Prahl L., Revstedt J., Fuchs L. Interaction among droplets in a uniform flow at intermediate Reynolds numbers [C]. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 2006.

    Google Scholar 

  18. Zhang L. X., Zhou, Z. C., Shao X. M. Numerical investigation on the drag force of a single bubble and bubble swarm [J]. Journal of Hydrodynamics, 2020, 32(6): 1043–1049.

    Article  Google Scholar 

  19. Rabha S. S., Buwa V. V. Volume-of-fluid (VOF) simulations of rise of single/multiple bubbles in sheared liquids [J]. Chemical Engineering Science, 2010, 65(1): 527–537.

    Article  Google Scholar 

  20. Weller H. G. A new approach to VOF-based interface capturing methods for incompressible and compressible flow [R]. UK: OpenCFD Ltd., 2008.

    Google Scholar 

  21. Chen S. L. Guo L. J. Viscosity effect on regular bubble entrapment during drop impact in to a deep pool [J]. Chemical Engineering Science, 2014, 109: 1–16.

    Article  Google Scholar 

  22. Berberovic E., Roisman I. V., Jakirlic S. et al. Inertia dominated flow and heat transfer in liquid drop spreading on a hot substrate [J]. International. Journal of Heat Fluid Flow, 2011, 32(4): 785–795.

    Article  Google Scholar 

  23. Jadoon A., Prahl L., Revstedt J. Dynamic interaction of fixed dual spheres for several configurations and inflow conditions [J]. European Journal of Mechanics-B/Fluids, 2009, 29(1): 43–52.

    Article  Google Scholar 

  24. Jasak H. Error analysis and estimation for the finite volume method with applications to fluid flows [M]. London, UK: Medicine, 1996.

    Google Scholar 

  25. OpenCFD ltd. The open source CFD toolbox: programmer's guide [R]. London, UK: OpenCFD Ltd., 2011.

    Google Scholar 

  26. Guildenbecher D. R., López-Rivera C., Sojka P. E. Secondary atomization [J]. Expiments in Fluids, 2009, 46(3): 371–402.

    Article  Google Scholar 

  27. Loth E. Quasi-steady shape and drag of deformable bubbles and drops [J]. International Journal of Multiphase Flow, 2008, 34(6): 523–546.

    Article  Google Scholar 

  28. Rodi W., Fueyo N. Engineering turbulence modeling and experiments [C]. Proceedings of the 5th International Symposium on Engineering Turbulence Modelling and Measurements, Mallorca, Spain, 2002.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Applied Basic Research Program of Science and Technology Department of Sichuan Province (Grant No. 2018JY0444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-bin Wang.

Additional information

Projects supported by the National Natural Science Foundation of China (Grant No. 51974263), the National Science and Technology Major Project of China (Grant No. 2016ZX05048001-06-LH).

Biography: Zhi-bin Wang (1982-), Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zb., Yang, Zw., Gou, Lj. et al. A volume of fluid simulation of the steady deformation and the drag of a single droplet in a flowing gas. J Hydrodyn 33, 334–346 (2021). https://doi.org/10.1007/s42241-021-0023-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0023-y

Key words

Navigation