Skip to main content
Log in

Detecting Spin Heat Accumulation by Sign Reversion of Thermopower in a Quantum Dot Side-Coupled to Majorana Bound States

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We propose a scheme to detect the spin heat accumulation (SHA), an effective spin-dependent electron temperature, via sign reversion of thermopower induced by the Majorana bound states (MBSs) coupled to a quantum dot (QD). The SHA is generated in either a nonmagnetic material or a ferromagnet serving as an electrode connected to the QD and leads the spin-up and spin-down thermopowers to change signs at different temperatures with the help of QD-MBSs coupling. The existence of the SHA then can be detected by the variation of the spin-polarized or even charge thermopower with respect to the magnitude of the SHA. Our numerical results show that the transition temperature of the thermopower is sensitive to QD-MBSs coupling strength, hybridization between the MBSs, and the ferromagnetism on the leads. Around the transition temperature, either 100% spin-polarized or pure spin thermopower can be generated by the combined effects of SHA and MBSs. We also find that the intradot Coulomb interaction does not change the qualitative results of the present scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Nature (London) 455, 778 (2008)

    Article  ADS  Google Scholar 

  2. M. Johnson, Solid. State. Commun. 150, 543 (2010)

    Article  ADS  Google Scholar 

  3. G.E. Bauer, E. Saitoh, B.J. van Wees, Nat. Mater. 150, 391 (2010)

    Google Scholar 

  4. Y. Dubi, M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011)

    Article  ADS  Google Scholar 

  5. L. Chotorlishvili, Z. Toklikishvili, X.G. Wang, V.K. Dugaev, J. Barnas, J. Berakdar, Phys. Rev. B 99, 024410 (2019)

    Article  ADS  Google Scholar 

  6. J. Park, F. Lupke, J. Jiang, X.G. Zhang, A.P. Li, Nano Lett. 20, 4910 (2020)

    Article  ADS  Google Scholar 

  7. H. Yu, S. Granville, D.P. Yu, J.P. Ansermet, Phys. Rev. Lett. 104, 146601 (2010)

    Article  ADS  Google Scholar 

  8. T.T. Heikkila, M. Hatami, G.E.W. Bauer, Phys. Rev. B 81, 100408 (2010)

    Article  ADS  Google Scholar 

  9. M. Hatami, G.E.W. Bauer, Q. Zhang, P.J. Kelly, Phys. Rev. B 79, 174426 (2009)

    Article  ADS  Google Scholar 

  10. J. Ren, J. Fransson, J.X. Zhu, Phys. Rev. B 89, 214407 (2014)

    Article  ADS  Google Scholar 

  11. L. Gu, H.H. Fu, R. Wu, Phys. Rev. B 94, 115433 (2016)

    Article  ADS  Google Scholar 

  12. J. Ren, Phys. Rev. B 88, 220406(R) (2013)

    Article  ADS  Google Scholar 

  13. J.P. Ramos-Andrade, F.J. Peña, A. González, O. Ávalos-Ovando, P.A. Orellana, Phys. Rev. B 96, 165413 (2017)

    Article  ADS  Google Scholar 

  14. H. Hammar, J..D. Vasquez Jaramillo, J. Fransson, Phys. Rev. B 99, 115416 (2019)

    Article  ADS  Google Scholar 

  15. C. Friesen, H. Osterhage, J. Friedlein, A. Schlenhoff, R. Wiesendanger, S. Krause, J. Phys. D: Appl. Phys. 51, 324001 (2018)

    Article  Google Scholar 

  16. R. Wiesendanger, S. Krause, Science 363, 1065 (2019)

    Article  ADS  Google Scholar 

  17. M. Hatami, G.E.W. Bauer, Q. Zhang, P.J. Kelly, Phys. Rev. Lett. 99, 066603 (2007)

    Article  ADS  Google Scholar 

  18. T.T. Heikkila, M. Hatami, G.E.W. Bauer, Phys. Rev. B 81, 100408(R) (2010)

    Article  ADS  Google Scholar 

  19. F.K. Dejene, J. Flipse, G.E.W. Bauer, B.J. van Wees, Nat. Phys. 9, 636 (2013)

    Article  Google Scholar 

  20. I.J. Vera-Marun, B.J. van Wees, R. Jansen, Phys. Rev. Lett. 112, 056602 (2014)

    Article  ADS  Google Scholar 

  21. J. Kimling, R.B. Wilson, K. Rott, J. Kimling, G. Reiss, D.G. Cahill, Phys. Rev. B 91, 144405 (2015)

    Article  ADS  Google Scholar 

  22. J. Kimling, D.G. Cahill, Phys. Rev. B 95, 014402 (2017)

    Article  ADS  Google Scholar 

  23. L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  24. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S.D. Sarma, Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  Google Scholar 

  25. X. Liu, X. Li, D.L. Deng, X.J. Liu, S.D. Sarma, Phys. Rev. B 94, 014511 (2016)

    Article  ADS  Google Scholar 

  26. S. Smirnov, Phys. Rev. B 97, 165434 (2018)

    Article  ADS  Google Scholar 

  27. M. Sato, S. Fujimoto, Phys. Rev. B 79, 094504 (2009)

    Article  ADS  Google Scholar 

  28. X.L. Qi, S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  29. M. Wimmer, A.R. Akhmerov, M.V. Medvedyeva, J. Tworzydło, C.W.J. Beenakker, Phys. Rev. Lett. 105, 046803 (2011)

    Article  ADS  Google Scholar 

  30. J.D. Sau, R.M. Lutchyn, S. Tewari, S.D. Sarma, Phys. Rev. Lett. 104, 040502 (2010)

    Article  ADS  Google Scholar 

  31. R.M. Lutchyn, J.D. Sau, S.D. Sarma, Phys. Rev. Lett. 105, 077001 (2010)

    Article  ADS  Google Scholar 

  32. F. Pientka, A. Keselman, E. Berg, A. Yacoby, A. Stern, B.I. Halperin, Phys. Rev. X 7, 021032 (2017)

    Google Scholar 

  33. V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336, 1003 (2012)

    Article  ADS  Google Scholar 

  34. M.T. Deng, C.L. Yu, G.Y. Huang, M. Larsson, P. Caroff, H.Q. Xu, Nano Lett. 12, 6414 (2012)

    Article  ADS  Google Scholar 

  35. D. Laroche, D. Bouman, D.J. van Woerkom, A. Proutski, C. Murthy, D.I. Pikulin, C. Nayak, R.J.J. van Gulik, J. Nygȧrd, P. Krogstrup, L.P. Kouwenhoven, A. Geresdi, Nat. Commun. 10, 245 (2019)

    Article  ADS  Google Scholar 

  36. Q.L. He, L. Pan, A.L. Stern, E.C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E.S. Choi, K. Murata, X. Kou, Z. Chen, T. Nie, Q. Shao, Y. Fan, S.C. Zhang, K. Liu, J. Xia, K.L. Wang, Science 357, 294 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. C.Y. Hou, K. Shtengel, G. Refael, Phys. Rev. B 88, 075304 (2013)

    Article  ADS  Google Scholar 

  38. M. Leijinse, New. J. Phys. 16, 015029 (2014)

    Article  ADS  Google Scholar 

  39. R. Lopez, M. Lee, L. Serra, J.S. Lim, Phys. Rev. B 89, 205418 (2014)

    Article  ADS  Google Scholar 

  40. L.S. Ricco, F.A. Dessotti, I.A. Shelykh, M.S. Figueira, A.C. Seridonio, Scient. Rep. 8, 2790 (2018)

    Article  ADS  Google Scholar 

  41. Y.M. Blanter, C. Bruder, R. Fazio, H. Schoeller, Phys. Rev. B 55, 4069 (1997)

    Article  ADS  Google Scholar 

  42. P. Trocha, J. Barnas, Phys. Rev. B 85, 085408 (2012)

    Article  ADS  Google Scholar 

  43. M. Krawiec, K.I. Wysoknski, Phys. Rev. B 75, 155330 (2007)

    Article  ADS  Google Scholar 

  44. D..P. Daroca, P. Roura-Bas, A..A. Aligia, Phys. Rev. B 97, 165433 (2018)

    Article  ADS  Google Scholar 

  45. F. Chi, Z.G. Fu, J. Liu, K.M. Li, Z.G. Wang, P. Zhang, Nanoscale Res. Lett. 15, 79 (2020)

    Article  ADS  Google Scholar 

  46. L.S. Ricco, M. de Souza, M.S. Figueira, I.A. Shelykh, A.C. Seridonio, Phys. Rev. B 99, 155159 (2019)

    Article  ADS  Google Scholar 

  47. P. Stefanski, J. Phys.: Condens. Matter 31, 185301 (2019)

    ADS  Google Scholar 

  48. D.E. Liu, H.U. Baranger, Phys. Rev. B B 84, 201308(R) (2011)

    Article  ADS  Google Scholar 

  49. J. Liu, Q.F. Sun, X.C. Xie, Phys. Rev. B 81, 245323 (2010)

    Article  ADS  Google Scholar 

  50. P.B. Niu, L.X. Liu, X.Q. Su, L.J. Dong, Y.L. Shi, H.G. Luo, Phys. E 124, 114313 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Research Funds for Beijing Universities (Project NO. KM201910009002) and the NSFC (Grant Nos. 61274101), the Initial Project of UEST of China, Zhongshan Institute (415YKQ02), and Science and Technology Bureau of Zhongshan (Grant Nos. 2017B1116 and 180809162197886).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, LL., Chi, F. Detecting Spin Heat Accumulation by Sign Reversion of Thermopower in a Quantum Dot Side-Coupled to Majorana Bound States. J Low Temp Phys 203, 381–391 (2021). https://doi.org/10.1007/s10909-021-02593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02593-9

Keywords

Navigation