Skip to main content
Log in

Biodiesel from rice bran lipids: resource assessment and technological review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The biodiesel (BD) industry struggles to compete with petroleum diesel because of its high cost, primarily attributed to the costs of raw material and production. Rice bran (RB) is an oleaginous agro-industrial residue which has been of interest as a feedstock for BD production. Although RB has been found to be a potential resource for various products of commercial interest, its current bulk but limited utilization is either as a source of edible oil or as an ingredient of feeds. A key challenge in processing lipids from rice bran is its significant free fatty acid content but is not necessarily a setback when utilized for biodiesel production. Despite the perceived potential, the sheer number of published researches, and even patented processes, there has been no quantitative assessment of the resource availability, and no commercialized process reported. In this work, a localized resource assessment with biodiesel yield estimates has been conducted to identify priority areas for adapting rice bran for biodiesel production. As leading paddy rice producers, Southern, Eastern, and Southeastern Asian regions were found to have potential in adapting RB as a biodiesel feedstock. Alongside this, detailed technological comparisons were described in this review, from lipid extraction, reaction systems or schemes, reactants, catalysts, reactor configurations and strategies, to emerging and patented technologies with economical and scalable potential. In addition, opportunities in (RB) processing and related government policies, foreseen impacts on economics, social, and environmental aspects, as well as existing challenges, were identified and discussed for future prospects and developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saunders RM (1985) Rice bran: Composition and potential food uses

  2. International Rice Research Institute (2015) Rice production manual: step to successful rice production. International Rice Research Institute

    Google Scholar 

  3. Luh BS (1991) Rice. Springer, US, Boston, MA

    Book  Google Scholar 

  4. Wang Y (2019) Applications of rice bran oil. In: Cheong L-Z, Xu X (eds) Rice bran and rice bran oil. Elsevier, pp 159–168

  5. Gul K, Yousuf B, Singh AK et al (2015) Rice bran: Nutritional values and its emerging potential for development of functional food - A review. Bioact Carbohydrates Diet Fibre 6:24–30. https://doi.org/10.1016/j.bcdf.2015.06.002

    Article  Google Scholar 

  6. Garba U, Singanusong R, Jiamyangyeun S, Thongsook T (2019) Extraction and utilisation of rice bran oil. A review. Riv Ital delle Sostanze Grasse 96:161–170

    Google Scholar 

  7. Ghosh M (2007) Review on recent trends in rice bran oil processing. JAOCS, J Am Oil Chem Soc 84:315–324. https://doi.org/10.1007/s11746-007-1047-3

    Article  Google Scholar 

  8. Food and Agriculture Organization of the United Nations (2019) Crops and livestock products. In: FAOSTAT. http://www.fao.org/faostat/en/#data/TP. Accessed 10 Jul 2020

  9. Rukmini CE (1991) Nutritional and biochemical aspects of the hypolipidémie action of rice bran oil: A review. J Am Coll Nutr 10:593–601. https://doi.org/10.1080/07315724.1991.10718181

    Article  Google Scholar 

  10. Sharma R, Srivastava T, Saxena DC (2015) Studies on Rice Bran and its benefits-a review. J Eng Res Appl 5:107–112 www.ijera.com

    Google Scholar 

  11. Friedman M (2013) Rice brans, rice bran oils, and rice hulls: Composition, food and industrial uses, and bioactivities in humans, animals, and cells. J Agric Food Chem 61:10626–10641. https://doi.org/10.1021/jf403635v

    Article  Google Scholar 

  12. Clariviate Analytics (2020) Web of science [v.5.34] - web of science core collection result analysis. http://wcs.webofknowledge.com/RA/analyze.do?product=WOS&SID=E3LDAV4r767v7W9yBNt&field=PY_PublicationYear_PublicationYear_en&yearSort=true. Accessed 9 Jul 2020

  13. Elsevier (2020) Scopus - Document search results. https://www.scopus.com/results/results.uri?numberOfFields=0&src=s&clickedLink=&edit=&editSaveSearch=&origin=searchbasic&authorTab=&affiliationTab=&advancedTab=&scint=1&menu=search&tablin=&searchterm1=Rice+bran+and+biodiesel&field1=TITLE_ABS_KEY&dateType=P. Accessed 9 Jul 2020

  14. Go AW (2015) Biodiesel production under subcritical conditions using solvent mixture of methanol, water, and acetic acid. National Taiwan University of Science and Technology

  15. Sutanto S, Go AW, Chen KH et al (2017) Release of sugar by acid hydrolysis from rice bran for single cell oil production and subsequent in-situ transesterification for biodiesel preparation. Fuel Process Technol 167:281–291. https://doi.org/10.1016/j.fuproc.2017.07.014

    Article  Google Scholar 

  16. Sutanto S, Go AW, Ismadji S, Ju Y-H (2020) Hydrolyzed rice bran as source of lipids and solid acid catalyst during in situ (trans)esterification. Biofuels 11:221–227. https://doi.org/10.1080/17597269.2017.1348190

    Article  Google Scholar 

  17. Ju YH, Vali SR (2005) Rice bran oil as a potential resource for biodiesel: A review. J Sci Ind Res (India). 64:866–882

    Google Scholar 

  18. Ju Y-H, Rayat ACME (2008) Handbook of Plant-Based Biofuels. In: Pandey A (ed) Handbook of Plant-Based Biofuels. CRC Press, pp 29–44

  19. Gunawan S, Maulana S, Anwar K, Widjaja T (2011) Rice bran, a potential source of biodiesel production in Indonesia. Ind Crops Prod 33:624–628. https://doi.org/10.1016/j.indcrop.2010.12.027

    Article  Google Scholar 

  20. Hasan AP, Wakil MA, Kafy MA (2014) Prospect of rice bran for biodiesel production in Bangladesh. Procedia Eng 90:746–752. https://doi.org/10.1016/j.proeng.2014.11.808

    Article  Google Scholar 

  21. Sundar K, Udayakumar R, Periasamy C, Khurana S (2019) Cotton seed oil and rice bran oil as a source of biodiesel in India. J Phys Conf Ser:1276. https://doi.org/10.1088/1742-6596/1276/1/012086

  22. Go AW, Conag AT, Igdon RMB et al (2019) Potentials of agricultural and agro-industrial crop residues for the displacement of fossil fuels: A Philippine context. Energy Strateg Rev 23:100–113

    Article  Google Scholar 

  23. Zaidel DNA, Muhamad II, Daud NSM et al (2019) Production of biodiesel from rice bran oil. In: Verma D, Fortunati E, Jain S, Zhang X (eds) Biomass, biopolymer-based materials, and bioenergy. Elsevier, pp 409–447

  24. Hoang AT, Tabatabaei M, Aghbashlo M et al (2021) Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. Renew Sustain Energy Rev:135. https://doi.org/10.1016/j.rser.2020.110204

  25. Dubey BN (2019) Comparative study on the rice bran stabilization processes: a review. Res Dev Mater Sci 11. https://doi.org/10.31031/rdms.2019.11.000759

  26. Food and Agriculture Organization of the United Nations SD (2019) Crop production and trade data. In: FAOSTAT. http://www.fao.org/faostat/en/#data. Accessed 13 Jun 2020

  27. United Nations Statistics Division (2020) UNdata. In: Diesel. https://data.un.org/Data.aspx?q=Diesel&d=EDATA&f=cmID%3ADL. Accessed 16 Jun 2020

  28. United States Department of Agriculture (2019) Global agricultural information network. In: Biofuels Annu. https://gain.fas.usda.gov/#/. Accessed 16 Jun 2020

  29. Özgül S, Türkay S (1993) In situ esterification of rice bran oil with methanol and ethanol. J Am Oil Chem Soc 70:145–147. https://doi.org/10.1007/BF02542617

    Article  Google Scholar 

  30. Zullaikah S, Lai C-C, Vali SR, Ju Y-H (2005) A two-step acid-catalyzed process for the production of biodiesel from rice bran oil. Bioresour Technol 96:1889–1896. https://doi.org/10.1016/j.biortech.2005.01.028

    Article  Google Scholar 

  31. Zullaikah S, Rahkadima YT, Ju YH (2017) A non-catalytic in situ process to produce biodiesel from a rice milling by-product using a subcritical water-methanol mixture. Renew Energy 111:764–770. https://doi.org/10.1016/j.renene.2017.04.040

    Article  Google Scholar 

  32. Lei H, Ding XF, Zhang HX et al (2010) In situ production of fatty acid methyl ester from low quality rice bran: An economical route for biodiesel production. Fuel 89:1475–1479. https://doi.org/10.1016/j.fuel.2009.10.008

    Article  Google Scholar 

  33. Li Z, Deng L, Lu J et al (2010) Enzymatic synthesis of fatty acid methyl esters from crude rice bran oil with immobilized Candida sp. 99–125. Chinese J Chem Eng 18:870–875. https://doi.org/10.1016/S1004-9541(09)60141-5

    Article  Google Scholar 

  34. Vijaya Lakshmi C, Viswanath K, Venkateshwar S, Satyavathi B (2011) Mixing characteristics of the oil-methanol system in the production of biodiesel using edible and non-edible oils. Fuel Process Technol 92:1411–1417. https://doi.org/10.1016/j.fuproc.2011.01.015

    Article  Google Scholar 

  35. Taslim I, Bani O et al (2018) Biodiesel production from rice bran oil by transesterification using heterogeneous catalyst natural zeolite modified with K2CO3. IOP Conf Ser Mater Sci Eng 309. https://doi.org/10.1088/1757-899X/309/1/012107

  36. Chuayplod P, Trakarnpruk W (2009) Transesterification of rice bran oil with methanol catalyzed by Mg(Al)La hydrotalcites and metal/MgAl oxides. Ind Eng Chem Res 48:4177–4183. https://doi.org/10.1021/ie8005947

    Article  Google Scholar 

  37. Rodriguez E, Salangad O, Almeda R et al (2019) Fatty acid and unsaponifiable composition of ten philippine food plant oils for possible nutraceutical and cosmeceutical applications. Agric For 65:115–134. https://doi.org/10.17707/AgricultForest.65.3.10

    Article  Google Scholar 

  38. Terigar BG, Balasubramanian S, Sabliov CM et al (2011) Soybean and rice bran oil extraction in a continuous microwave system: From laboratory- to pilot-scale. J Food Eng 104:208–217. https://doi.org/10.1016/j.jfoodeng.2010.12.012

    Article  Google Scholar 

  39. Einloft S, Magalhães TO, Donato A et al (2008) Biodiesel from rice bran oil: Transesterification by Tin compounds. Energy and Fuels 22:671–674. https://doi.org/10.1021/ef700510a

    Article  Google Scholar 

  40. Douvartzides SL, Charisiou ND, Papageridis KN, Goula MA (2019) Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies 12. https://doi.org/10.3390/en12050809

  41. Talebi AF, Mohtashami SK, Tabatabaei M et al (2013) Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Res 2:258–267. https://doi.org/10.1016/j.algal.2013.04.003

    Article  Google Scholar 

  42. Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob ADR (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91:102–111. https://doi.org/10.1016/j.fuel.2011.06.070

    Article  Google Scholar 

  43. Knothe G, Dunn RO (2003) Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. JAOCS, J Am Oil Chem Soc 80:1021–1026. https://doi.org/10.1007/s11746-003-0814-x

    Article  Google Scholar 

  44. Krisnangkura K (1986) A simple method for estimation of cetane index of vegetable oil methyl esters. J Am Oil Chem Soc 63:552–553. https://doi.org/10.1007/BF02645752

    Article  Google Scholar 

  45. Jayaraman J, Appavu P, Mariadhas A, et al (2019) Production of rice bran methyl esters and their engine characteristics in a DI diesel engine. Int J Ambient Energy 0:1–9. https://doi.org/10.1080/01430750.2019.1630314

  46. Lin L, Ying D, Chaitep S, Vittayapadung S (2009) Biodiesel production from crude rice bran oil and properties as fuel. Appl Energy 86:681–688. https://doi.org/10.1016/j.apenergy.2008.06.002

    Article  Google Scholar 

  47. Mumtaz MW, Adnan A, Anwar F et al (2012) Response surface methodology: An emphatic tool for optimized biodiesel production using rice bran and sunflower oils. Energies 5:3307–3328. https://doi.org/10.3390/en5093307

    Article  Google Scholar 

  48. Ramos MJ, Fernández CM, Casas A et al (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268. https://doi.org/10.1016/j.biortech.2008.06.039

    Article  Google Scholar 

  49. Park JY, Kim DK, Lee JP et al (2008) Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresour Technol 99:1196–1203. https://doi.org/10.1016/j.biortech.2007.02.017

    Article  Google Scholar 

  50. El Boulifi N, Bouaid A, Martinez M, Aracil J (2013) Optimization and oxidative stability of biodiesel production from rice bran oil. Renew Energy 53:141–147. https://doi.org/10.1016/j.renene.2012.11.005

    Article  Google Scholar 

  51. Wakil MA, Kalam MA, Masjuki HH et al (2014) Evaluation of rice bran, sesame and moringa oils as feasible sources of biodiesel and the effect of blending on their physicochemical properties. RSC Adv 4:56984–56991. https://doi.org/10.1039/c4ra09199j

    Article  Google Scholar 

  52. Rahman MM, Rasul MG, Hassan NMS et al (2017) Effect of small proportion of butanol additive on the performance, emission, and combustion of Australian native first- and second-generation biodiesel in a diesel engine. Environ Sci Pollut Res 24:22402–22413. https://doi.org/10.1007/s11356-017-9920-6

    Article  Google Scholar 

  53. Dhamodaran G, Krishnan R, Pochareddy YK et al (2017) A comparative study of combustion, emission, and performance characteristics of rice-bran-, neem-, and cottonseed-oil biodiesels with varying degree of unsaturation. Fuel 187:296–305. https://doi.org/10.1016/j.fuel.2016.09.062

    Article  Google Scholar 

  54. Kusumo F, Mahlia TMI, Shamsuddin AH et al (2019) The effect of multi-walled carbon nanotubes-additive in physicochemical property of rice brand methyl ester: optimization analysis. Energies 12:3291. https://doi.org/10.3390/en12173291

    Article  Google Scholar 

  55. Srinivasa Rao K, Panthangi RK, Ahmed Ali Baig M (2020) Comparative characteristic analysis of diesel engine with biodiesels. Int J Mech Prod Eng Res Dev 10:615–626. https://doi.org/10.24247/ijmperdfeb202052

    Article  Google Scholar 

  56. Alagu K, Nagappan B, Jayaraman J, Arul Gnana Dhas A (2018) Impact of antioxidant additives on the performance and emission characteristics of C.I engine fuelled with B20 blend of rice bran biodiesel. Environ Sci Pollut Res 25:17634–17644. https://doi.org/10.1007/s11356-018-1934-1

    Article  Google Scholar 

  57. Zuñiga-Díaz J, Reyes-Dorantes E, Quinto-Hernandez A et al (2018) Biodiesel from “morelos” Rice: Synthesis, Oxidative Stability, and Corrosivity. J Chem 2018. https://doi.org/10.1155/2018/4595130

  58. Go AW, Agapay RC, Ju YH, et al (2020) The capacity of major countries in Southeast Asia in meeting biodiesel mandates and pursue higher blends based on available major feedstocks. Biofuels 0:1–13. https://doi.org/10.1080/17597269.2020.1824474

  59. Sivala K, Mukherjee RK, Bhole NG (1993) A preliminary study of rice bran oil expression in a manually operated hydraulic press. J Food Eng 20:215–222. https://doi.org/10.1016/0260-8774(93)90065-R

    Article  Google Scholar 

  60. El-Kholy MM, Matouk AM, El-Sandany M, Hendawy YT (2009) Factors affecting on rice bran oil extraction using hydrulic press unit. Misr J Ag Eng 26:306–323

    Google Scholar 

  61. Matouk AM, El-Kholy MM, El-Sandany M, Hnadawy YT (2009) Rice bran oil extraction using an expeller machine. Misr J Ag Eng 26:324–342

    Google Scholar 

  62. Srikaeo K, Pradit M (2011) Simple techniques to increase the production yield and enhance the quality of organic rice bran oils. J Oleo Sci 60:1–5. https://doi.org/10.5650/jos.60.1

    Article  Google Scholar 

  63. Pengkumsri N, Chaiyasut C, Sivamaruthi BS et al (2015) The influence of extraction methods on composition and antioxidant properties of rice bran oil. Food Sci Technol 35:493–501. https://doi.org/10.1590/1678-457X.6730

    Article  Google Scholar 

  64. Sayasoonthorn S, Kaewrueng S, Patharasathapornkul P (2012) Rice bran oil extraction by screw press method: optimum operating settings, oil extraction level and press cake appearance. Rice Sci 19:75–78. https://doi.org/10.1016/S1672-6308(12)60024-9

    Article  Google Scholar 

  65. In Prasit C, Thumkote B (2017) A study to determine an optimal die configuration for rice bran oil extraction using a screw press machine. J Sci Technol Kasetsart Univ 6:32–47

    Google Scholar 

  66. Arișanu AO (2013) Mechanical continuous oil expression from oilseeds: oil yield and press capacity. 5th Int Conf Comput Mech Virtual Eng:347–352

  67. Yusuf AK (2018) A review of methods used for seed oil extraction. Int J Sci Res 7:233–238. https://doi.org/10.21275/1121804

    Article  Google Scholar 

  68. Fraterrigo Garofalo S, Tommasi T, Fino D (2020) A short review of green extraction technologies for rice bran oil. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00846-3

  69. Amarasinghe BMWPK, Gangodavilage NC (2004) Rice bran oil extraction in Sri Lanka: data for process equipment design. Food Bioprod Process 82:54–59. https://doi.org/10.1205/096030804322985326

    Article  Google Scholar 

  70. Zúñiga-Diaz J, Reyes-Dorantes E, Quinto-Hernandez A et al (2017) Oil extraction from “morelos rice” bran: kinetics and raw oil stability. J Chem 2017:1–9. https://doi.org/10.1155/2017/3837506

    Article  Google Scholar 

  71. Proctor A, Bowen DJ (1996) Ambient-temperature extraction of rice bran oil with hexane and isopropanol. JAOCS, J Am Oil Chem Soc 73:811–813. https://doi.org/10.1007/BF02517960

    Article  Google Scholar 

  72. Kamimura JAAM, Aracava KK, Rodrigues CEC (2017) Experimental data and modeling of rice bran oil extraction kinetics using ethanol as solvent. Sep Sci Technol 52:1921–1928. https://doi.org/10.1080/01496395.2017.1307224

    Article  Google Scholar 

  73. Oliveira R, Oliveira V, Aracava KK, Rodrigues CEDC (2012) Effects of the extraction conditions on the yield and composition of rice bran oil extracted with ethanol - A response surface approach. Food Bioprod Process 90:22–31. https://doi.org/10.1016/j.fbp.2011.01.004

    Article  Google Scholar 

  74. Hu W, Wells JH, Shin TS, Godber JS (1996) Comparison of isopropanol and hexane for extraction of vitamin E and oryzanols from stabilized rice bran. JAOCS, J Am Oil Chem Soc 73:1653–1656. https://doi.org/10.1007/BF02517967

    Article  Google Scholar 

  75. Loyao AS, Villasica SLG, Dela Peña PLL, Go AW (2018) Extraction of lipids from spent coffee grounds with non-polar renewable solvents as alternative. Ind Crops Prod 119:152–161. https://doi.org/10.1016/j.indcrop.2018.04.017

    Article  Google Scholar 

  76. Capellini MC, Giacomini V, Cuevas MS, Rodrigues CEC (2017) Rice bran oil extraction using alcoholic solvents: Physicochemical characterization of oil and protein fraction functionality. Ind Crops Prod 104:133–143. https://doi.org/10.1016/j.indcrop.2017.04.017

    Article  Google Scholar 

  77. Zhao W, Shishikura A, Fujimoto K et al (1987) Fractional extraction of rice bran oil with supercritical carbon dioxide. Agric Biol Chem 51:1773–1777. https://doi.org/10.1080/00021369.1987.10868305

    Article  Google Scholar 

  78. Sparks D, Hernandez R, Zappi M et al (2006) Extraction of rice bran oil using supercritical carbon dioxide and propane. JAOCS, J Am Oil Chem Soc 83:885–891. https://doi.org/10.1007/s11746-006-5042-x

    Article  Google Scholar 

  79. Liu H-M, Wang F-Y, Li H-Y et al (2015) Subcritical butane and propane extraction of oil from rice bran. BioResources 10:4652–4662. https://doi.org/10.15376/biores.10.3.4652-4662

    Article  Google Scholar 

  80. Soares JF, Dal Prá V, De Souza M et al (2016) Extraction of rice bran oil using supercritical CO2 and compressed liquefied petroleum gas. J Food Eng 170:58–63. https://doi.org/10.1016/j.jfoodeng.2015.09.016

    Article  Google Scholar 

  81. Khoei M, Chekin F (2016) The ultrasound-assisted aqueous extraction of rice bran oil. Food Chem 194:503–507. https://doi.org/10.1016/j.foodchem.2015.08.068

    Article  Google Scholar 

  82. Cravotto G, Binello A, Merizzi G, Avogadro M (2004) Improving solvent-free extraction of policosanol from rice bran by high-intensity ultrasound treatment. Eur J Lipid Sci Technol 106:147–151. https://doi.org/10.1002/ejlt.200300914

    Article  Google Scholar 

  83. Sengupta R, Bhattacharyya DK (1996) Enzymatic extraction of mustard seed and rice bran. JAOCS, J Am Oil Chem Soc 73:687–692. https://doi.org/10.1007/BF02517941

    Article  Google Scholar 

  84. Sharma A, Khare SK, Gupta MN (2001) Enzyme-assisted aqueous extraction of rice bran oil. JAOCS, J Am Oil Chem Soc 78:949–951. https://doi.org/10.1007/s11746-001-0369-x

    Article  Google Scholar 

  85. Pourali O, Salak Asghari F, Yoshida H (2009) Simultaneous rice bran oil stabilization and extraction using sub-critical water medium. J Food Eng 95:510–516. https://doi.org/10.1016/j.jfoodeng.2009.06.014

    Article  Google Scholar 

  86. Bessa LCBA, Ferreira MC, Rodrigues CEC et al (2017) Simulation and process design of continuous countercurrent ethanolic extraction of rice bran oil. J Food Eng 202:99–113. https://doi.org/10.1016/j.jfoodeng.2017.01.019

    Article  Google Scholar 

  87. Shen Z, Palmer MV, Ting SST, Fairclough RJ (1996) Pilot scale extraction of rice bran oil with dense carbon dioxide. J Agric Food Chem 44:3033–3039. https://doi.org/10.1021/jf950761z

    Article  Google Scholar 

  88. Bak YC, Choi JH, Kim SB, Kang DW (1996) Production of bio-diesel fuels by transesterification of rice bran oil. Korean J Chem Eng 13:242–245. https://doi.org/10.1007/BF02705945

    Article  Google Scholar 

  89. Sinha S, Agarwal AK, Garg S (2008) Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Convers Manag 49:1248–1257. https://doi.org/10.1016/j.enconman.2007.08.010

    Article  Google Scholar 

  90. Prabu A, Premkumar I, Pradeep A (2019) Production of ricebran biodiesel by the bubble wash method. Int J Ambient Energy 0:1–4. https://doi.org/10.1080/01430750.2019.1583128

  91. Krishnakumar J, Venkatachalapathy VSK, Elancheliyan S (2008) Technical aspects of biodiesel production from vegetable oils. Therm Sci 12:159–169. https://doi.org/10.2298/TSCI0802159K

    Article  Google Scholar 

  92. Eevera T, Rajendran K, Saradha S (2009) Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renew Energy 34:762–765. https://doi.org/10.1016/j.renene.2008.04.006

    Article  Google Scholar 

  93. Ahmad M, Samuel S, Zafar M et al (2011) Physicochemical characterization of Eco-friendly rice Bran oil biodiesel. Energy Sources, Part A Recover Util Environ Eff 33:1386–1397. https://doi.org/10.1080/15567036.2010.511428

    Article  Google Scholar 

  94. Ju YH, Zullaikah S (2013) Effect of acid-catalyzed methanolysis on the bioactive components of rice bran oil. J Taiwan Inst Chem Eng 44:924–928. https://doi.org/10.1016/j.jtice.2013.03.006

    Article  Google Scholar 

  95. Santoso A, Abdurrohman WAR et al (2020) Synthesis of methyl ester from rice bran oil through the esterification reaction. Key Eng Mater 851:164–171. https://doi.org/10.4028/www.scientific.net/KEM.851.164

    Article  Google Scholar 

  96. Rashid U, Anwar F, Ansari TM et al (2009) Optimization of alkaline transesterification of rice bran oil for biodiesel production using response surface methodology. J Chem Technol Biotechnol 84:1364–1370. https://doi.org/10.1002/jctb.2191

    Article  Google Scholar 

  97. Kattimani VR, Venkatesha BM, Ananda S (2014) Biodiesel production from unrefined rice bran oil through three-stage transesterification. Adv Chem Eng Sci 04:361–366. https://doi.org/10.4236/aces.2014.43039

    Article  Google Scholar 

  98. Akhtar FH, Elsheikh YA, Bassyouni M et al (2014) An alkali catalyzed transesterification of rice bran, cottonseed and waste cooking oil. Hem Ind 68:347–355. https://doi.org/10.2298/HEMIND130619061A

    Article  Google Scholar 

  99. Zhao X, Qi F, Yuan C et al (2015) Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renew Sustain Energy Rev 44:182–197. https://doi.org/10.1016/j.rser.2014.12.021

    Article  Google Scholar 

  100. Tan T, Lu J, Nie K et al (2010) Biodiesel production with immobilized lipase: A review. Biotechnol Adv 28:628–634. https://doi.org/10.1016/j.biotechadv.2010.05.012

    Article  Google Scholar 

  101. Lai CC, Zullaikah S, Vali SR, Ju YH (2005) Lipase-catalyzed production of biodiesel from rice bran oil. J Chem Technol Biotechnol 80:331–337. https://doi.org/10.1002/jctb.1208

    Article  Google Scholar 

  102. Rodrigues RC, Volpato G, Wada K, Ayub MAZ (2008) Enzymatic synthesis of biodiesel from transesterification reactions of vegetable oils and short chain alcohols. JAOCS, J Am Oil Chem Soc 85:925–930. https://doi.org/10.1007/s11746-008-1284-0

    Article  Google Scholar 

  103. Choi N, Kim Y, Lee JS et al (2016) Synthesis of fatty acid ethyl ester from acid oil in a continuous reactor via an enzymatic transesterification. JAOCS, J Am Oil Chem Soc 93:311–318. https://doi.org/10.1007/s11746-016-2786-9

    Article  Google Scholar 

  104. Mazaheri H, Ong HC, Masjuki HH et al (2018) Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell. Energy 144:10–19. https://doi.org/10.1016/j.energy.2017.11.073

    Article  Google Scholar 

  105. Roschat W, Kacha M, Yoosuk B et al (2012) Biodiesel production based on heterogeneous process catalyzed by solid waste coral fragment. Fuel 98:194–202. https://doi.org/10.1016/j.fuel.2012.04.009

    Article  Google Scholar 

  106. Rizkianto F, Jindal VK, Jindal R et al (2020) Biodiesel production from refined rice bran oil using eggshell waste as catalyst impregnated with silver nanoparticles. Proc 2020 4th Int Conf Green Energy Appl ICGEA 2020:134–138. https://doi.org/10.1109/ICGEA49367.2020.239706

    Article  Google Scholar 

  107. Kabo KS, Yacob AR, Bakar WAWA et al (2016) BBD optimization of K-ZnO catalyst modification process for heterogeneous transesterification of rice bran oil to biodiesel. IOP Conf Ser Mater Sci Eng 136. https://doi.org/10.1088/1757-899X/136/1/012063

  108. Evangelista JPC, Chellappa T, Coriolano ACF et al (2012) Synthesis of alumina impregnated with potassium iodide catalyst for biodiesel production from rice bran oil. Fuel Process Technol 104:90–95. https://doi.org/10.1016/j.fuproc.2012.04.028

    Article  Google Scholar 

  109. Fatimah I, Taushiyah A, Najah FB, Azmi U (2018) ZrO2/bamboo leaves ash (BLA) catalyst in biodiesel conversion of rice bran Oil. IOP Conf Ser Mater Sci Eng 349. https://doi.org/10.1088/1757-899X/349/1/012027

  110. Shibasaki-Kitakawa N, Tsuji T, Chida K et al (2010) Simple continuous production process of biodiesel fuel from oil with high content of free fatty acid using ion-exchange resin catalysts. Energy and Fuels 24:3634–3638. https://doi.org/10.1021/ef100109u

    Article  Google Scholar 

  111. Narayama GK, Ramachandr P, Gandhi S et al (2012) SBA-15 as a nanostructured catalyst for preparation of biodiesel from rice bran oil. Asian J Sci Res 5:196–206. https://doi.org/10.3923/ajsr.2012.196.206

    Article  Google Scholar 

  112. Hidayat A, Mukti NIF, Handoko B, Sutrisno B (2018) Biodiesel production from rice bran oil over modified natural zeolite catalyst. Int J Technol 9:400–411. https://doi.org/10.14716/ijtech.v9i2.1084

    Article  Google Scholar 

  113. Yacob AR, MAM Z (2017, 1904) Effect of one step KOH activation and CaO modified carbon in transesterification reaction. AIP Conf Proc. https://doi.org/10.1063/1.5011938

  114. Nguyen DD, Dharmaraja J, Shobana S et al (2019) Transesterification and fuel characterization of rice bran oil: A biorefinery path. Fuel 253:975–987. https://doi.org/10.1016/j.fuel.2019.05.063

    Article  Google Scholar 

  115. Rizwanul Fattah IM, Ong HC, Mahlia TMI et al (2020) State of the art of catalysts for biodiesel production. Front Energy Res 8:1–17. https://doi.org/10.3389/fenrg.2020.00101

    Article  Google Scholar 

  116. Macierzanka A, Szela̧g H (2004) Esterification kinetics of glycerol with fatty acids in the presence of zinc carboxylates: Preparation of modified acylglycerol emulsifiers. Ind Eng Chem Res 43:7744–7753. https://doi.org/10.1021/ie040077m

  117. Ting RR, Agapay R, Angkawijaya AE et al (2019) Diglyceride production via noncatalyzed esterification of glycerol and oleic acid. Asia-Pacific J Chem Eng 14:1–11. https://doi.org/10.1002/apj.2383

    Article  Google Scholar 

  118. Choudhury RBR (1962) The preparation and purification of monoglycerides. II. Direct esterification of fatty acids with glycerol. J Am Oil Chem Soc 39:345–347. https://doi.org/10.1007/BF02631982

    Article  Google Scholar 

  119. Zeng Q, Han S, Zhang D et al (2009) Deacidification of high-acid rice bran oil by esterification for the raw material of biodiesel. Nongye Gongcheng Xuebao/Transactions Chinese Soc Agric Eng 25:215–219. https://doi.org/10.3969/j.issn.1002-6819.2009.08.039

    Article  Google Scholar 

  120. Pereira E, dos Santos LM, Einloft S et al (2015) Biodiesel production from high FFA degummed rice bran oil by a two-step process using ethanol/methanol and a green catalyst. Waste and Biomass Valorization 6:343–351. https://doi.org/10.1007/s12649-015-9349-4

    Article  Google Scholar 

  121. Fereidooni L, Pirkarami A (2018) Improvement of methyl ester production through modified rice bran as a heterogeneous catalyst. Phys Chem Res 6:805–814. https://doi.org/10.22036/pcr.2018.135586.1494

    Article  Google Scholar 

  122. Zhang Y, Wong WT, Yung KF (2013) One-step production of biodiesel from rice bran oil catalyzed by chlorosulfonic acid modified zirconia via simultaneous esterification and transesterification. Bioresour Technol 147:59–64. https://doi.org/10.1016/j.biortech.2013.07.152

    Article  Google Scholar 

  123. Srilatha K, Sree R, Prabhavathi Devi BLA et al (2012) Preparation of biodiesel from rice bran fatty acids catalyzed by heterogeneous cesium-exchanged 12-tungstophosphoric acids. Bioresour Technol 116:53–57. https://doi.org/10.1016/j.biortech.2012.04.047

    Article  Google Scholar 

  124. Go AW, Sutanto S, Ong LK et al (2016) Developments in in-situ (trans) esterification for biodiesel production: A critical review. Renew. Sustain. Energy Rev. 60:284–305

    Article  Google Scholar 

  125. Özgül-Yücel S, Türkay S (2003) FA monoalkylesters from rice bran oil by in situ esterification. JAOCS, J Am Oil Chem Soc 80:81–84. https://doi.org/10.1007/s11746-003-0655-7

    Article  Google Scholar 

  126. Özgül-Yücel S, Türkay S (2002) Variables affecting the yields of methyl esters derived from in situ esterification of rice bran oil. JAOCS, J Am Oil Chem Soc 79:611–614. https://doi.org/10.1007/s11746-002-0531-5

    Article  Google Scholar 

  127. Yustianingsih L, Zullaikah S, Ju YH (2009) Ultrasound assisted in situ production of biodiesel from rice bran. J Energy Inst 82:133–137. https://doi.org/10.1179/014426009X12448168550064

    Article  Google Scholar 

  128. Shiu PJ, Gunawan S, Hsieh WH et al (2010) Biodiesel production from rice bran by a two-step in-situ process. Bioresour Technol 101:984–989. https://doi.org/10.1016/j.biortech.2009.09.011

    Article  Google Scholar 

  129. Lei H, Ding X, Zhao J et al (2011) In situ production of fatty acid ethyl ester from low quality rice bran. Fuel 90:592–597. https://doi.org/10.1016/j.fuel.2010.09.040

    Article  Google Scholar 

  130. Zullaikah S, Rakhadima YT, Rachimoellah M et al (2014) An efficient method for the production of biodiesel from rice bran. IPTEK Journal of Proceeding:351–354

  131. Yasmin M, Zullaikah S, Permatasari A et al (2019) Effect of acid-catalysed in one step production of biodiesel on total sugars of defatted rice bran. IOP Conf Ser Mater Sci Eng:588. https://doi.org/10.1088/1757-899X/588/1/012013

  132. Saka S, Kusdiana D (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80:225–231. https://doi.org/10.1016/S0016-2361(00)00083-1

    Article  Google Scholar 

  133. Warabi Y, Kusdiana D, Saka S (2004) Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresour Technol 91:283–287. https://doi.org/10.1016/S0960-8524(03)00202-5

    Article  Google Scholar 

  134. Saka S, Isayama Y (2009) A new process for catalyst-free production of biodiesel using supercritical methyl acetate. Fuel 88:1307–1313. https://doi.org/10.1016/j.fuel.2008.12.028

    Article  Google Scholar 

  135. Goembira F, Matsuura K, Saka S (2012) Biodiesel production from rapeseed oil by various supercritical carboxylate esters. Fuel 97:373–378. https://doi.org/10.1016/j.fuel.2012.02.051

    Article  Google Scholar 

  136. Ilham Z, Saka S (2012) Optimization of supercritical dimethyl carbonate method for biodiesel production. Fuel 97:670–677. https://doi.org/10.1016/j.fuel.2012.02.066

    Article  Google Scholar 

  137. Kusdiana D, Saka S (2004) Two-step preparation for catalyst-free biodiesel fuel production. Appl Biochem Biotechnol 115:781–791. https://doi.org/10.1385/ABAB:115:1-3:0781

    Article  Google Scholar 

  138. Ilham Z, Saka S (2010) Two-step supercritical dimethyl carbonate method for biodiesel production from Jatropha curcas oil. Bioresour Technol 101:2735–2740. https://doi.org/10.1016/j.biortech.2009.10.053

    Article  Google Scholar 

  139. Saka S, Isayama Y, Ilham Z, Jiayu X (2010) New process for catalyst-free biodiesel production using subcritical acetic acid and supercritical methanol. Fuel 89:1442–1446. https://doi.org/10.1016/j.fuel.2009.10.018

    Article  Google Scholar 

  140. Ju YH, Huynh LH, Tsigie YA, Ho QP (2013) Synthesis of biodiesel in subcritical water and methanol. Fuel 105:266–271. https://doi.org/10.1016/j.fuel.2012.05.061

    Article  Google Scholar 

  141. Go AW, Tran Nguyen PL, Huynh LH et al (2014) Catalyst free esterification of fatty acids with methanol under subcritical condition. Energy 70:393–400. https://doi.org/10.1016/j.energy.2014.04.013

    Article  Google Scholar 

  142. Go AW, Sutanto S, Nguyenthi BT et al (2014) Transesterification of soybean oil with methanol and acetic acid at lower reaction severity under subcritical conditions. Energy Convers Manag 88:1159–1166. https://doi.org/10.1016/j.enconman.2014.03.014

    Article  Google Scholar 

  143. Go AW, Sutanto S, Liu YT et al (2014) In situ transesterification of Jatropha curcas L. seeds in subcritical solvent system. J Taiwan Inst Chem Eng 45:1516–1522. https://doi.org/10.1016/j.jtice.2014.01.010

    Article  Google Scholar 

  144. Go AW, Sutanto S, Tran-Nguyen PL et al (2014) Biodiesel production under subcritical solvent condition using subcritical water treated whole Jatropha curcas seed kernels and possible use of hydrolysates to grow Yarrowia lipolytica. Fuel 120:46–52. https://doi.org/10.1016/j.fuel.2013.11.066

    Article  Google Scholar 

  145. Tran-Nguyen PL, Go AW, Ismadji S, Ju YH (2015) Transesterification of activated sludge in subcritical solvent mixture. Bioresour Technol 197:30–36. https://doi.org/10.1016/j.biortech.2015.08.033

    Article  Google Scholar 

  146. Sutanto S, Go AW, Ismadji S, Ju YH (2015) Taguchi method and grey relational analysis to improve in situ production of fame from sunflower and jatropha curcas kernels with subcritical solvent mixture. JAOCS, J Am Oil Chem Soc 92:1513–1523. https://doi.org/10.1007/s11746-015-2714-4

    Article  Google Scholar 

  147. Felix C, Ubando A, Madrazo C et al (2018) Uncatalyzed direct biodiesel production from wet microalgae under subcritical conditions. In: HNICEM 2017 - 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, pp 1–5

    Google Scholar 

  148. Kasim NS, Tsai TH, Gunawan S, Ju YH (2009) Biodiesel production from rice bran oil and supercritical methanol. Bioresour Technol 100:2399–2403. https://doi.org/10.1016/j.biortech.2008.11.041

    Article  Google Scholar 

  149. Vieitez I, Irigaray B, Casullo P et al (2012) Effect of free fatty acids on the efficiency of the supercritical ethanolysis of vegetable oils from different origins. Energy and Fuels 26:1946–1951. https://doi.org/10.1021/ef201977s

    Article  Google Scholar 

  150. Akkarawatkhoosith N, Kaewchada A, Jaree A (2020) Continuous catalyst-free biodiesel synthesis from rice bran oil fatty acid distillate in a microreactor. Energy Reports 6:545–549. https://doi.org/10.1016/j.egyr.2019.11.117

    Article  Google Scholar 

  151. Zullaikah S, Utami S, Herminanto RP, Rachimoellah M (2019) Enhanced biodiesel and ethyl levulinate production from rice bran through non catalytic in situ transesterification under subcritical water ethanol mixture. Mater Sci Forum 964(MSF):234–239. https://doi.org/10.4028/www.scientific.net/MSF.964.234

    Article  Google Scholar 

  152. Yasmin M, Alfaty FD, Pradipta HS et al (2019) An improvement study of biodiesel production from rice bran via non-catalytic in-situ transesterification using a subcritical water-methanol mixture. IOP Conf Ser Mater Sci Eng 543. https://doi.org/10.1088/1757-899X/543/1/012068

  153. Zullaikah S, Rahkadima YT (2015, 1699) In-situ biodiesel and sugar production from rice bran under subcritical condition. AIP Conf Proc. https://doi.org/10.1063/1.4938315

  154. Prihandini G, Elizabeth L (2020) Sub critical water-methanol condition of rice bran oil for biodiesel production. IOP Conf Ser Mater Sci Eng 830. https://doi.org/10.1088/1757-899X/830/2/022015

  155. Sreedhar I, Kishan YK (2016) Process standardization and kinetics of ethanol driven biodiesel production by transesterification of ricebran oil. Int J Ind Chem 7:121–129. https://doi.org/10.1007/s40090-016-0074-z

    Article  Google Scholar 

  156. Arora R, Toor AP, Wanchoo RK (2015) Esterification of high free fatty acid rice bran oil: Parametric and kinetic study. Chem Biochem Eng Q 29:617–623. https://doi.org/10.15255/CABEQ.2014.2117

    Article  Google Scholar 

  157. Kanitkar A, Balasubramanian S, Lima M, Boldor D (2011) A critical comparison of methyl and ethyl esters production from soybean and rice bran oil in the presence of microwaves. Bioresour Technol 102:7896–7902. https://doi.org/10.1016/j.biortech.2011.05.091

    Article  Google Scholar 

  158. Tan SX, Lim S, Ong HC, Pang YL (2019) State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel 235:886–907. https://doi.org/10.1016/j.fuel.2018.08.021

    Article  Google Scholar 

  159. Nomanbhay S, Ong MY (2017) A review of microwave-assisted reactions for biodiesel production. Bioengineering:4. https://doi.org/10.3390/bioengineering4020057

  160. Ibrahim H, Silitonga AS, Rahmawaty et al (2020) An ultrasound assisted transesterification to optimize biodiesel production from rice bran oil. Int J Technol 11:225–234. https://doi.org/10.14716/ijtech.v11i2.905

    Article  Google Scholar 

  161. Terigar BG, Balasubramanian S, Lima M, Boldor D (2010) Transesterification of soybean and rice bran oil with ethanol in a continuous-flow microwave-assisted system: Yields, quality, and reaction kinetics. Energy and Fuels 24:6609–6615. https://doi.org/10.1021/ef1011929

    Article  Google Scholar 

  162. Velappan K, Saravanan S, Vedaraman N, Rao P (2005) Process for the preparation of bio-diesel

  163. Bureros GMA, Tanjay AA, Cuizon DES et al (2019) Cacao shell-derived solid acid catalyst for esterification of oleic acid with methanol. Renew Energy 138:489–501. https://doi.org/10.1016/j.renene.2019.01.082

    Article  Google Scholar 

  164. Go A, Liu Y-T, Ju Y-H (2013) Applicability of subcritical water treatment on oil seeds to enhance extractable lipid. BioEnergy Res 7:711–719. https://doi.org/10.1007/s12155-013-9397-1

    Article  Google Scholar 

  165. Tran Nguyen PL, Go AW, Huynh LH, Ju YH (2013) A study on the mechanism of subcritical water treatment to maximize extractable cellular lipids. Biomass and Bioenergy 59:532–539. https://doi.org/10.1016/j.biombioe.2013.08.031

    Article  Google Scholar 

  166. Mahlia TMI, Syazmi ZAHS, Mofijur M et al (2020) Patent landscape review on biodiesel production: Technology updates. Renew Sustain Energy Rev 118:109526. https://doi.org/10.1016/j.rser.2019.109526

    Article  Google Scholar 

  167. Sharma M, Kumar R, Sinha R, et al (2006) Process for producing biodiesel and the product thereof. 1–7

  168. Cantizani A (2013) Processes and apparatus for small-scale in situ biodiesel production. 1–40

  169. Lin J(林金清), Zhao Q(赵强), Fu H(付宏权), Chen D(陈丹丹) (2013) Method for preparing biodiesel based on ionic liquid catalyzing peracid value rice bran oil. 1–7

  170. Oschmanns W (2008) Biodiesel production. 1–36

  171. Kim I-H, Choi N, No DS (2016) Method for producing biodiesel using rice bran. 1–31

  172. Choi N, No DS, Kim H et al (2018) In situ lipase-catalyzed transesterification in rice bran for synthesis of fatty acid methyl ester. Ind Crops Prod 120:140–146. https://doi.org/10.1016/j.indcrop.2018.04.049

    Article  Google Scholar 

  173. Calero J, Luna D, Sancho ED et al (2015) An overview on glycerol-free processes for the production of renewable liquid biofuels, applicable in diesel engines. Renew Sustain Energy Rev 42:1437–1452. https://doi.org/10.1016/j.rser.2014.11.007

    Article  Google Scholar 

  174. Okoye PU, Hameed BH (2016) Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production. Renew Sustain Energy Rev 53:558–574. https://doi.org/10.1016/j.rser.2015.08.064

    Article  Google Scholar 

  175. Estevez R, Aguado-Deblas L, Bautista FM et al (2019) Biodiesel at the crossroads: a critical review. Catalysts 9:1033–1071. https://doi.org/10.3390/catal9121033

    Article  Google Scholar 

  176. Gwardiak H, Kijenski JA, Lipkowski AW, et al (2005) A biofuel for compression-ignition engines and a method for preparing the biofuel. 1–7

  177. Kijełski J (2007) Biorefineries - from biofuels to the chemicalization of agricultural products. Polish J Chem Technol 9:42–45. https://doi.org/10.2478/v10026-007-0051-6

    Article  Google Scholar 

  178. Notari M, Rivetti F (2004) Use of mixtures of esters of fatty acids as fuel or solvent. 1–23

  179. Fabbri D, Bevoni V, Notari M, Rivetti F (2007) Properties of a potential biofuel obtained from soybean oil by transmethylation with dimethyl carbonate. Fuel 86:690–697. https://doi.org/10.1016/j.fuel.2006.09.003

    Article  Google Scholar 

  180. Ilham Z, Saka S (2009) Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method. Bioresour Technol 100:1793–1796. https://doi.org/10.1016/j.biortech.2008.09.050

    Article  Google Scholar 

  181. Rubio FMB, Martin VC, Perez JMC, et al (2006) Method for producing biodiesel using porcine pancreatic lipase as an enzymatic biocatalyst. 1–17

  182. Caballero V, Bautista FM, Campelo JM et al (2009) Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: Partial 1,3-regiospecific alcoholysis of sunflower oil. Process Biochem 44:334–342. https://doi.org/10.1016/j.procbio.2008.11.015

    Article  Google Scholar 

  183. Company CE, Ferrer NB, Boliart JC (2015) Formulation, preparation and use of a glycerol-based biofuel. 1–18

  184. Company CE, Ferrer NB, Boliart JC (2015) Process for manufacturing biofuels. 1–8

  185. Company CE, Ferrer NB, Boliart JC (2008) Preparation of fatty acid esters of glycerol formal and its use as biofuel. 1–13

  186. Lapuerta M, Rodríguez-Fernández J, Estevez C, Bayarri N (2015) Properties of fatty acid glycerol formal ester (FAGE) for use as a component in blends for diesel engines. Biomass and Bioenergy 76:130–140. https://doi.org/10.1016/j.biombioe.2015.03.008

    Article  Google Scholar 

  187. Kasim NS, Chen H, Ju Y-H (2007) Recovery of γ-oryzanol from biodiesel residue. J Chinese Inst Chem Eng 38:229–234

    Article  Google Scholar 

  188. Fabian C, Ju YH (2011) A review on rice bran protein: Its properties and extraction methods. Crit Rev Food Sci Nutr 51:816–827. https://doi.org/10.1080/10408398.2010.482678

    Article  Google Scholar 

  189. Sutanto S, Go AW, Chen K-HH et al (2017) Maximized utilization of raw rice bran in microbial oils production and recovery of active compounds: A proof of concept. Waste and Biomass Valorization 8:1067–1080. https://doi.org/10.1007/s12649-016-9685-z

    Article  Google Scholar 

  190. Go AW, Pham TYN, Truong CT et al (2020) Improved solvent economy and rate of rice bran lipid extraction using hydrolyzed rice bran with hexane as solvent. Biomass and Bioenergy 142:105773. https://doi.org/10.1016/j.biombioe.2020.105773

    Article  Google Scholar 

  191. Haas MJ, McAloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97:671–678. https://doi.org/10.1016/j.biortech.2005.03.039

    Article  Google Scholar 

  192. Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN (2012) Production of biodiesel using high free fatty acid feedstocks. Renew Sustain Energy Rev 16:3275–3285. https://doi.org/10.1016/j.rser.2012.02.063

    Article  Google Scholar 

  193. Wakil MA, Kalam MA, Masjuki HH, Fattah IMR (2016) Rice bran: A prospective resource for biodiesel production in Bangladesh. Int J Green Energy 13:497–504. https://doi.org/10.1080/15435075.2014.966374

    Article  Google Scholar 

  194. Subramaniam Y, Masron TA, Hadiyan N, Azman N (2020) Energy research & social science biofuels, environmental sustainability, and food security : A review of 51 countries. Energy Res Soc Sci 68:101549. https://doi.org/10.1016/j.erss.2020.101549

    Article  Google Scholar 

  195. Godri KJ, Chhan D, Rais K et al (2019) Biodiesel fuels : A greener diesel? A review from a health perspective. Sci Total Environ 688:1036–1055. https://doi.org/10.1016/j.scitotenv.2019.06.002

    Article  Google Scholar 

  196. Costa OYA, Almeida JRM, Barreto CC et al (2013) Biodiesel production in Brazil and alternative biomass feedstocks. Renew Sustain Energy Rev 21:411–420. https://doi.org/10.1016/j.rser.2012.12.058

    Article  Google Scholar 

  197. Antonio M, Cristina E, Ribeiro B (2019) Competitiveness analysis of “social soybeans” in biodiesel production in Brazil. Renew Energy 133:1147–1157. https://doi.org/10.1016/j.renene.2018.08.108

    Article  Google Scholar 

  198. Mofijur M, Masjuki HH, Kalam MA et al (2015) Energy scenario and biofuel policies and targets in ASEAN countries. Renew Sustain Energy Rev 46:51–61. https://doi.org/10.1016/j.rser.2015.02.020

    Article  Google Scholar 

  199. Kumar S, Shrestha P, Abdul Salam P (2013) A review of biofuel policies in the major biofuel producing countries of ASEAN: Production, targets, policy drivers and impacts. Renew Sustain Energy Rev 26:822–836. https://doi.org/10.1016/J.RSER.2013.06.007

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Ministry of Science and Technology, Taiwan, for the financial support provided through the research grant MOST 108-2218-E-011-032-MY3. Also, A. W. G. would like to thank the National Taiwan University of Science and Technology for the teaching and research start-up support and grant (109O210007/109O410307) provided for 2019–2021 to organize the research group involved and provided part of the needed facility.

Author information

Authors and Affiliations

Authors

Contributions

Alchris Woo Go—writing original draft, writing-review and editing, supervision, project administration, formal analysis, funding acquisition, conceptualization, methodology, visualization.

Kristelle L. Quijote—writing original draft, writing-review and editing, formal analysis, conceptualization, methodology, visualization.

Ramelito C. Agapay—writing original draft, writing-review and editing, formal analysis.

Yi-Hsu Ju—writing-review and editing, conceptualization, resources, supervision.

Artik Elisa Angkawijaya—writing-review and editing, resources.

Shella Permatasari Santoso—writing-review and editing.

Corresponding author

Correspondence to Alchris Woo Go.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, A.W., Quijote, K.L., Agapay, R.C. et al. Biodiesel from rice bran lipids: resource assessment and technological review. Biomass Conv. Bioref. 13, 3475–3519 (2023). https://doi.org/10.1007/s13399-021-01371-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01371-7

Keywords

Navigation