Skip to main content

Advertisement

Log in

Long-term elevated CO2 and warming enhance microbial necromass carbon accumulation in a paddy soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Soil microbial necromass plays a critical role in soil organic C (SOC) sequestration, while the long-term response of microbial necromass to climate change remains largely unclear. Here, we used amino sugars as biomarkers and examined their variation after 8 years of continuous manipulation of elevated CO2 (eCO2), warming, and their combined interaction in a paddy soil. Our results showed that eCO2 increased the concentrations of all amino sugar compounds by 6.5–28.9% while warming had no effect on the accumulation of glucosamine and galactosamine but increased muramic acid concentration by 22.1–29.1%. Elevated CO2 increased the contribution of microbial necromass C to SOC storage, mainly by increasing fungal-derived C, whereas warming increased the bacterial-derived C proportion in SOC. Furthermore, the combined effect of eCO2 and warming yielded the highest total microbial necromass and SOC accumulation, although the ratio of fungal to bacterial necromass C in SOC remained unchanged. Structural equation models showed that root biomass had an indirect positive effect on total amino sugar concentration, mainly through increased microbial biomass, whereas N-acetylglucosaminidase activity had a direct negative effect on total amino sugar accumulation. These differential responses of microbial necromass to climate change may further alter the sequestration of SOC. This study is only based on one sampling time, and future research should involve more sampling times so as to have the temporal dynamics of the studied properties. Our findings emphasize the contribution of the microbial-derived C to soil C stock under long-term elevated CO2 and warming in a rice-wheat rotation system, which reveals an important mechanism of microbial-mediated C sequestration under climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv Agron 100:155–250

    Article  CAS  Google Scholar 

  • Appuhn A, Joergensen RG (2006) Microbial colonisation of roots as a function of plant species. Soil Biol Biochem 38:1040–1051

    Article  CAS  Google Scholar 

  • Beier S, Bertilsson S (2013) Bacterial chitin degradation—mechanisms and ecophysiological strategies. Front Microbiol 4:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW (2016) Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Chang 6:751–758

    Article  Google Scholar 

  • Burke DJ, Weintraub MN, Hewins CR, Kalisz S (2011) Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol Biochem 43:795–803

    Article  CAS  Google Scholar 

  • Conrad R, Klose M (1999) Anaerobic conversion of carbon dioxide to methane: acetate and propionate on washed rice roots. FEMS Microbiol Ecol 30:147–155

    Article  CAS  PubMed  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995

    Article  PubMed  Google Scholar 

  • Dalal R (1998) Soil microbial biomass—what do the numbers really mean? Aust J Exp Agric 38:649–665

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Derrien D, Amelung W (2011) Computing the mean residence time of soil carbon fractions using stable isotopes: impacts of the model framework. Eur J Soil Sci 62:237–252

    Article  Google Scholar 

  • Ding X, Chen S, Zhang B, He H, Filley TR, Horwath WR (2020) Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan Plateau. Biol Fertil Soils 56:881–892

    Article  CAS  Google Scholar 

  • Ding X, Liang C, Zhang B, Yuan Y, Han X (2015) Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil. Soil Biol Biochem 84:137–146

    Article  CAS  Google Scholar 

  • Ding X, Zhang B, Filley TR, Tian C, Zhang X, He H (2019a) Changes of microbial residues after wetland cultivation and restoration. Biol Fertil Soils 55:405–409

    Article  Google Scholar 

  • Ding XL, Chen SY, Zhang B, Liang C, He HB, Horwath WR (2019b) Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil Biol Biochem 135:13–19

    Article  CAS  Google Scholar 

  • Engelking B, Flessa H, Joergensen RG (2007) Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol Biochem 39:2111–2118

    Article  CAS  Google Scholar 

  • Eudy LW, Walla MD, Morgan SL, Fox A (1985) Gas chromatographic-mass spectrometric determination of muramic acid content and pyrolysis profiles for a group of gram-positive and gram-negative bacteria. Analyst 110:381–385

    Article  CAS  PubMed  Google Scholar 

  • Freixa A, Acuna V, Casellas M, Pecheva S, Romani AM (2017) Warmer night-time temperature promotes microbial heterotrophic activity and modifies stream sediment community. Glob Chang Biol 23:3825–3837

    Article  PubMed  Google Scholar 

  • Frolking S, Qiu J, Boles S, Xiao X, Liu J, Zhuang Y, Li C, Qin X (2002) Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob Biogeochem Cycles 16:1091–1101

    Article  Google Scholar 

  • German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem 43:1387–1397

    Article  CAS  Google Scholar 

  • Glaser B, Millar N, Blum H (2006) Sequestration and turnover of bacterial- and fungal-derived carbon in a temperate grassland soil under long-term elevated atmospheric pCO2. Glob Chang Biol 12:1521–1531

    Article  Google Scholar 

  • Glaser B, Turrión M-B, Alef K (2004) Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis. Soil Biol Biochem 36:399–407

    Article  CAS  Google Scholar 

  • Guggenberger G, Frey SD, Six J, Paustian K, Elliott ET (1999) Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Sci Soc Am 63:1188–1198

    Article  CAS  Google Scholar 

  • Hu ZK, Chen XY, Yao JN, Zhu CW, Zhu JG, Liu MQ (2020) Plant-mediated effects of elevated CO2 and rice cultivars on soil carbon dynamics in a paddy soil. New Phytol 225:2368–2379

    Article  CAS  PubMed  Google Scholar 

  • Jastrow JD, Amonette JE, Bailey VL (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim Chang 80:5–23

    Article  CAS  Google Scholar 

  • Jing Y, Wang Y, Liu S, Zhang X, Wang Q, Liu K, Yin Y, Deng J (2019) Interactive effects of soil warming, through fall reduction, and root exclusion on soil microbial community and residues in warm-temperate oak forests. Appl Soil Ecol 142:52–58

    Article  Google Scholar 

  • Joergensen RG (2018) Amino sugars as specific indices for fungal and bacterial residues in soil. Biol Fertil Soils 54:559–568

    Article  CAS  Google Scholar 

  • Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keiblinger KM, Hall EK, Wanek W, Szukics U, Hammerle I, Ellersdorfer G, Bock S, Strauss J, Sterflinger K, Richter A, Zechmeister-Boltenstern S (2010) The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiol Ecol 73:430–440

    CAS  PubMed  Google Scholar 

  • Khan KS, Mack R, Castillo X, Kaiser M, Joergensen RG (2016) Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271:115–123

    Article  CAS  Google Scholar 

  • Knauer J, Zaehle S, De Kauwe MG, Bahar NHA, Evans JR, Medlyn BE, Reichstein M, Werner C (2019) Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model. Glob Chang Biol 25:1820–1838

    Article  PubMed  PubMed Central  Google Scholar 

  • Kogel-Knabner I (2017) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol Biochem 105:A3–A8

    Article  Google Scholar 

  • Li L, Wilson CB, He H, Zhang X, Zhou F, Schaeffer SM (2019) Physical, biochemical, and microbial controls on amino sugar accumulation in soils under long-term cover cropping and no-tillage farming. Soil Biol Biochem 135:369–378

    Article  CAS  Google Scholar 

  • Liang C, Amelung W, Lehmann J, Kastner M (2019) Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Chang Biol 25:3578–3590

    Article  PubMed  Google Scholar 

  • Liang C, Balser TC (2011) Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat Rev Microbiol 9:75

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Balser TC (2012) Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool. Nat Commun 3:1222

    Article  PubMed  Google Scholar 

  • Liang C, Gutknecht JL, Balser TC (2015) Microbial lipid and amino sugar responses to long-term simulated global environmental changes in a California annual grassland. Front Microbiol 6:385

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:17105

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Zhang X, Rubert KF, Balser TC (2007) Effect of plant materials on microbial transformation of amino sugars in three soil microcosms. Biol Fertil Soils 43:631–639

    Article  Google Scholar 

  • Liu Y, Li M, Zheng J, Li L, Zhang X, Zheng J, Pan G, Yu X, Wang J (2014) Short-term responses of microbial community and functioning to experimental CO2 enrichment and warming in a Chinese paddy field. Soil Biol Biochem 77:58–68

    Article  CAS  Google Scholar 

  • Liu Z, Wu X, Liu W, Bian R, Ge T, Zhang W, Zheng J, Drosos M, Liu X, Zhang X, Cheng K, Li L, Pan G (2020) Greater microbial carbon use efficiency and carbon sequestration in soils: amendment of biochar versus crop straws. GCB Bioenergy 12:1092–1103

    Article  CAS  Google Scholar 

  • Ma T, Zhu S, Wang Z, Chen D, Dai G, Feng B, Su X, Hu H, Li K, Han W, Liang C, Bai Y, Feng X (2018) Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat Commun 9:3480

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins CSC, Macdonald CA, Anderson IC, Singh BK (2016) Feedback responses of soil greenhouse gas emissions to climate change are modulated by soil characteristics in dryland ecosystems. Soil Biol Biochem 100:21–32

    Article  CAS  Google Scholar 

  • Meidute S, Demoling F, Baath E (2008) Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biol Biochem 40:2334–2343

    Article  CAS  Google Scholar 

  • Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41–55

    Article  CAS  Google Scholar 

  • Murugan R, Kumar S (2013) Influence of long-term fertilisation and crop rotation on changes in fungal and bacterial residues in a tropical rice-field soil. Biol Fertil Soils 49:847–856

    Article  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Ni X, Liao S, Tan S, Wang D, Peng Y, Yue K, Wu F, Yang Y (2020) A quantitative assessment of amino sugars in soil profiles. Soil Biol Biochem 143:107762

    Article  CAS  Google Scholar 

  • Pan G, Li L, Wu L, Zhang X (2004) Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Glob Chang Biol 10:79–92

    Article  Google Scholar 

  • Parsons JW (1981) Chemistry and distribution of amino sugars in soils and soil organisms. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, NY, pp 197–227

    Google Scholar 

  • Roberts P, Bol R, Jones DL (2007) Free amino sugar reactions in soil in relation to soil carbon and nitrogen cycling. Soil Biol Biochem 39:3081–3092

    Article  CAS  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao P, He H, Zhang X, Xie H, Bao X, Liang C (2018) Responses of microbial residues to simulated climate change in a semiarid grassland. Sci Total Environ 644:1286–1291

    Article  CAS  PubMed  Google Scholar 

  • Simpson AJ, Simpson MJ, Smith E, Kelleher BP (2007) Microbially derived inputs to soil organic matter: are current estimates too low? Environ Sci Technol 41:8070–8076

    Article  CAS  PubMed  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am 70:555–569

    Article  CAS  Google Scholar 

  • Wan X, Huang Z, He Z, Yu Z, Wang M, Davis MR, Yang Y (2014) Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 387:103–116

    Article  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation extraction - an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Xia Y, Chen X, Hu Y, Zheng S, Ning Z, Guggenberger G, He H, Wu J, Su Y (2019) Contrasting contribution of fungal and bacterial residues to organic carbon accumulation in paddy soils across eastern China. Biol Fertil Soils 55:767–776

    Article  CAS  Google Scholar 

  • Xiong L, Liu X, Vinci G, Spaccini R, Drosos M, Li L, Piccolo A, Pan G (2019) Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2 enrichment and warming of canopy air. Soil Biol Biochem 137:107544

    Article  CAS  Google Scholar 

  • Ylla I, Canhoto C, Romaní AM (2014) Effects of warming on stream biofilm organic matter use capabilities. Microb Ecol 68:132–145

    Article  PubMed  Google Scholar 

  • Zhang B, Chen S, He X, Liu W, Zhao Q, Zhao L, Tian C (2014) Responses of soil microbial communities to experimental warming in alpine grasslands on the Qinghai-Tibet plateau. PLoS One 9:e103859

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Amelung W (1996) Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol Biochem 28:1201–1206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Paolo Nannipieri, the Editor in Chief, the anonymous reviewers, and Dr. Aaron R. Gall for their very valuable comments in improving both the language and scientific quality of the manuscript.

Funding

This work was partially supported by the National Natural Science Foundation of China under grant numbers 41877097 and 41877096 and the National Key R&D Program of China under grant No. 2017YFD0300202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jufeng Zheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, X., Wu, X. et al. Long-term elevated CO2 and warming enhance microbial necromass carbon accumulation in a paddy soil. Biol Fertil Soils 57, 673–684 (2021). https://doi.org/10.1007/s00374-021-01557-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-021-01557-1

Keywords

Navigation