Skip to main content
Log in

The Emerging Trends of Quantum Computing Towards Data Security and Key Management

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

A Correction to this article was published on 28 April 2021

This article has been updated

Abstract

Quantum Computing is an emerging technology that can perform high intensive computing tasks which are needed in different areas such as data search from high volume data repository, prime factorization, number theory, cybersecurity, polynomial evaluation, interpolation, Machine learning, Artificial Intelligence and many more applications. Any computational problem that can be solved by classical computer can also be solved by the quantum computer in more efficient manner. Out of all these problem domains the quantum computing is closely associated with network security in which key distribution and management are two main applications found to be implemented in various capacities. This paper explains a concise overview of the basic elements of Quantum Computing, its fundamentals, and various key distribution schemes based on Quantum Computing. Additionally, this article also touches upon the applications of quantum computing in computational engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Moizuddin M, Winston J, Qayyum M (2017) A comprehensive survey: quantum cryptography. In: 2017 2nd international conference on anti-cyber crimes (ICACC). IEEE, pp 98–102

  2. Diffie W, Hellman M (1976) New directions in cryptography. IEEE Trans Inf Theory 22(6):644–654

    Article  MathSciNet  MATH  Google Scholar 

  3. Babu VM, Ganesh TS, Ramraj K (2014) A comparative analysis on encryption and decryption algorithms. Int J Sci Res Publ 4(12):1

    Google Scholar 

  4. Diwaker N, Gupta B, Kumari N, Tanwar S (2013) Quantum cryptography: a new approach to information security. Available at SSRN 2245514

  5. Pirandola S, Mancini S, Lloyd S, Braunstein SL (2008) Continuous-variable quantum cryptography using two-way quantum communication. Nat Phys 4(9):726–730

    Article  Google Scholar 

  6. Oberkampf WL, Trucano TG, Hirsch C (2004) Verification, validation, and predictive capability in computational engineering and physics. Appl Mech Rev 57(5):345–384

    Article  Google Scholar 

  7. Ralph TC (1999) Continuous variable quantum cryptography. Phys Rev A 61(1):010303

    Article  MathSciNet  Google Scholar 

  8. Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74(1):145

    Article  MATH  Google Scholar 

  9. Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567(7747):209–212

    Article  Google Scholar 

  10. Narayanan A, Menneer T (2000) Quantum artificial neural network architectures and components. Inf Sci 128(3–4):231–255

    Article  MathSciNet  MATH  Google Scholar 

  11. Cao Y, Guerreschi GG, Aspuru-Guzik A (2017) Quantum neuron: an elementary building block for machine learning on quantum computers. arXiv preprint arXiv:1711.11240

  12. Zhao Y, Fung C-HF, Qi B, Chen C, Lo H-K (2008) Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys Rev A 78(4):042333

    Article  Google Scholar 

  13. Roache PJ (1998) Verification and validation in computational science and engineering, vol 895. Hermosa Albuquerque

  14. Schuld M, Bocharov A, Svore KM, Wiebe N (2020) Circuit-centric quantum classifiers. Phys Rev A 101(3):032308

    Article  MathSciNet  Google Scholar 

  15. van Atteveldt W, Peng T-Q (2018) When communication meets computation: opportunities, challenges, and pitfalls in computational communication science. Commun Methods Meas 12(2–3):81–92

    Article  Google Scholar 

  16. Shah DV, Cappella JN, Neuman WR (2015) Big data, digital media, and computational social science: possibilities and perils. Ann Am Acad Pol Soc Sci 659(1):6–13

    Article  Google Scholar 

  17. Hollowood TJ (2014) Schrödinger’s cat and the firewall. Int J Mod Phys D 23(12):1441004

    Article  MATH  Google Scholar 

  18. Veyrat DL (2015) Firewalls and the quantum properties of black holes. PhD thesis, College of William and Mary

  19. Verstraete F, Wolf MM, Cirac JI (2009) Quantum computation and quantum-state engineering driven by dissipation. Nat Phys 5(9):633–636

    Article  Google Scholar 

  20. Outeiral C, Strahm M, Shi J, Morris GM, Benjamin SC, Deane CM (2021) The prospects of quantum computing in computational molecular biology. Wiley Interdiscip Rev Comput Mol Sci 11(1):e1481

    Article  Google Scholar 

  21. Chandra S, Paira S, Alam SS, Sanyal G, (2014) A comparative survey of symmetric and asymmetric key cryptography. In: 2014 international conference on electronics, communication and computational engineering (ICECCE). IEEE, pp 83–93

  22. Laser JS, Jain V (2016) A comparative survey of various cryptographic techniques. Int Res J Eng Technol 3(03):11–17

    Google Scholar 

  23. Mavroeidis V, Vishi K, Zych MD, Jøsang A, (2018) The impact of quantum computing on present cryptography. arXiv preprint arXiv:1804.00200

  24. Kirsch Z, Chow M (2015) Quantum computing: The risk to existing encryption methods. Retrieved from http://www.cs.tufts.edu/comp/116/archive/fall2015/zkirsch.pdf

  25. Nissar G, Garg DK, Khan BUI (2019) Implementation of security enhancement in AES by inducting dynamicity in AES s-box. Int J Innov Technol Explor Eng 8(10):1–9

    Google Scholar 

  26. Jirwan N, Singh A, Vijay DS (2013) Review and analysis of cryptography techniques. Int J Sci Eng Res 4(3):1–6

    Google Scholar 

  27. Preneel B (1998) Modern cryptology: an introduction. https://secappdev.org/handout

  28. Basu S, Sengupta S (2016) A novel quantum cryptography protocol. In: 2016 international conference on information technology (ICIT)

  29. Padamvathi V, Vardhan BV, Krishna A (2016) Quantum cryptography and quantum key distribution protocols: a survey. In: 2016 IEEE 6th international conference on advanced computing (IACC). IEEE, pp 556–562

  30. Huttner B, Imoto N, Gisin N, Mor T (1995) Quantum cryptography with coherent states. Phys Rev A 51(3):1863

    Article  Google Scholar 

  31. Homer I (2000) 6.213, transl. Ian Johnston (in English). Malaspina University-College, Nanaimo, BC, Canada

  32. Leary T (1996) Cryptology in the 15th and 16th century. Cryptologia 20(3):223–242

    Article  MATH  Google Scholar 

  33. Wheeler JA, Zurek WH (2014) Quantum theory and measurement. Princeton University Press

  34. Ses B (2013) Study of quantum cryptography. Int J Adv Res Comput Eng Technol 2(5)

  35. Menon PS, Ritwik M (2014) A comprehensive but not complicated survey on quantum computing. IERI Procedia 10:144–152

    Article  Google Scholar 

  36. Brassard G, Lütkenhaus N, Mor T, Sanders BC (2000) Limitations on practical quantum cryptography. Phys Rev Lett 85(6):1330

    Article  MATH  Google Scholar 

  37. Elitzur AC, Vaidman L (1993) Quantum mechanical interaction-free measurements. Found Phys 23(7):987–997

    Article  Google Scholar 

  38. Chernega VN, Man’ko OV, Man’ko VI (2017) Triangle geometry of the qubit state in the probability representation expressed in terms of the triada of Malevich’s squares. J Russ Laser Res 38(2):141–149

    Article  Google Scholar 

  39. Verma P, Lohiya R (2015) A comprehensive survey on: quantum cryptography. Int J Sci Res 4(4):2214–2219

    Google Scholar 

  40. Avaliani A (2004) Quantum computers. arXiv preprint cs/0405004

  41. Vaziri A, Weihs G, Zeilinger A (2002) Superpositions of the orbital angular momentum for applications in quantum experiments. J Opt B Quantum Semiclass Opt 4(2):S47

    Article  Google Scholar 

  42. Mastriani M (2015) Quantum Boolean image denoising. Quantum Inf Process 14(5):1647–1673

    Article  MathSciNet  MATH  Google Scholar 

  43. Yan F, Chen K, Venegas-Andraca SE, Zhao J (2017) Quantum image rotation by an arbitrary angle. Quantum Inf Process 16(11):282

    Article  MathSciNet  MATH  Google Scholar 

  44. Dynes JF, Takesue H, Yuan ZL, Sharpe AW, Harada K, Honjo T, Kamada H, Tadanaga O, Nishida Y, Asobe M et al (2009) Efficient entanglement distribution over 200 kilometers. Opt Express 17(14):11440–11449

    Article  Google Scholar 

  45. Mayers D (2001) Unconditional security in quantum cryptography. J ACM 48(3):351–406

    Article  MathSciNet  MATH  Google Scholar 

  46. Shor PW, Preskill J (2000) Simple proof of security of the bb84 quantum key distribution protocol. Phys Rev Lett 85(2):441

    Article  Google Scholar 

  47. König R, Renner R, Bariska A, Maurer U (2005) Locking of accessible information and implications for the security of quantum cryptography. arXiv preprint quant-ph/0512021

  48. Canetti R (2000) Security and composition of multiparty cryptographic protocols. J Cryptol 13(1):143–202

    Article  MathSciNet  MATH  Google Scholar 

  49. Canetti R (2001) Universally composable security: A new paradigm for cryptographic protocols. In: Proceedings 42nd IEEE symposium on foundations of computer science. IEEE, pp 136–145

  50. Pfitzmann B, Waidner M (2000) Composition and integrity preservation of secure reactive systems. In: Proceedings of the 7th ACM conference on computer and communications security, pp 245–254

  51. Pfitzmann B, Waidner M (2000) A model for asynchronous reactive systems and its application to secure message transmission. In: Proceedings 2001 IEEE symposium on security and privacy. S&P 2001. IEEE, pp 184–200

  52. Ben-Or M, Mayers D (2004) General security definition and composability for quantum & classical protocols. arXiv preprint quant-ph/0409062

  53. Ben-Or M, Horodecki M, Leung DW, Mayers D, Oppenheim J (2005) The universal composable security of quantum key distribution. In: Theory of cryptography conference. Springer, pp 386–406

  54. Unruh D (2004) Simulatable security for quantum protocols. arXiv preprint quant-ph/0409125

  55. Renner R, König R (2005) Universally composable privacy amplification against quantum adversaries. In: Theory of cryptography conference. Springer, pp 407–425

  56. Makarov V (2007) Quantum cryptography and quantum cryptanalysis. Norwegian University of Science and Technology, Trondheim, Norway

    Google Scholar 

  57. Serna EH (2009) Quantum key distribution protocol with private-public key. arXiv preprint arXiv:0908.2146

  58. Knight W (2004) Entangled photons secure money transfer. New Scientist 22

  59. Houston III L. Secure ballots using quantum cryptography. Retrived from https://www.cse.wustl.edu/~jain/cse571-07/ftp/ballots/index. html

  60. Lomonaco SJ (1999) A quick glance at quantum cryptography. Cryptologia 23(1):1–41

    Article  MATH  Google Scholar 

  61. Scarani V, Acin A, Ribordy G, Gisin N (2004) Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys Rev Lett 92(5):057901

    Article  Google Scholar 

  62. Jeong Y-C, Kim Y-S, Kim Y-H (2014) An experimental comparison of bb84 and sarg04 quantum key distribution protocols. Laser Phys Lett 11(9):095201

    Article  Google Scholar 

  63. Lopes M, Sarwade N (2014) Cryptography from quantum mechanical viewpoint. arXiv preprint arXiv:1407.2357

  64. Wiechers C, Lydersen L, Wittmann C, Elser D, Skaar J, Marquardt C, Makarov V, Leuchs G (2011) After-gate attack on a quantum cryptosystem. New J Phys 13(1):013043

    Article  Google Scholar 

  65. Fung C-HF, Tamaki K, Lo H-K (2006) Performance of two quantum-key-distribution protocols. Phys Rev A 73(1):012337

    Article  Google Scholar 

  66. Jha MS, Maity SK, Nirmal MK, Krishna J (2019) A survey on quantum cryptography and quantum key distribution protocols. Int. J Adv Res Ideas Innov Technol 5:144–147

    Google Scholar 

  67. Serna EH (2013) Quantum key distribution from a random seed. arXiv preprint arXiv:1311.1582

  68. Gnatyuk S, Okhrimenko T, Dorozhynskyy S, Fesenko A (2020) Review of modern quantum key distribution protocols. Sci Pract Cyber Secur J 4(1):56–60

    Google Scholar 

  69. Ford J (1996) Quantum cryptography tutorial. http://www.cs.dartmouth.edu/~jford/crypto.html

  70. Jain S, Chouhan N, Saini HK (2016) A survey on different visions with contrasting quantum and traditional cryptography. Int J Comput Appl 134(8):33–38

    Google Scholar 

  71. Kurtsiefer C, Zarda P, Mayer S, Weinfurter H (2001) The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks? J Mod Opt 48(13):2039–2047

    Article  Google Scholar 

  72. Pinheiro PVP, Chaiwongkhot P, Sajeed S, Horn RT, Bourgoin J-P, Jennewein T, Lütkenhaus N, Makarov V (2018) Eavesdropping and countermeasures for backflash side channel in quantum cryptography. Opt Express 26(16):21020–21032

    Article  Google Scholar 

  73. Derkach I, Usenko VC, Filip R (2016) Preventing side-channel effects in continuous-variable quantum key distribution. Phys Rev A 93(3):032309

    Article  Google Scholar 

  74. Usenko VC, Filip R (2016) Trusted noise in continuous-variable quantum key distribution: a threat and a defense. Entropy 18(1):20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramkumar Ketti Ramachandran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Ketti Ramachandran, R. The Emerging Trends of Quantum Computing Towards Data Security and Key Management. Arch Computat Methods Eng 28, 5021–5034 (2021). https://doi.org/10.1007/s11831-021-09578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09578-7

Navigation