Skip to main content
Log in

Response of Geochemical Characteristics on the Environmental Changes in the Holocene: Data on Bottom Sediments of Lake Maloe, Iturup Island

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Major and trace element distribution in the bottom sediments of Lake Maloe located on the Kuybyshev Isthmus, Iturup Island, was analyzed using the method of principal components. It was established that the geochemical characteristics of Lake Maloe sediments reflect a change from marine and lagoonal to fresh-water sedimentation environments. According to geochemical data, the erosion and weathering products of proximal rocks supplied detritus in the sedimentary basin. Marine facies (up to 6400 yr ago) are characterized by the increased contents of carbonates, the high salinity index Sr/Ba, and the low contents of nickel, biogenic silica, and organic matter. The element composition is clearly correlated with grain-size composition. The CIA index and Rb/Sr ratio indicate that the coarse-grained varieties, regardless of their genesis, are less chemically altered. They are enriched in detrital components, which comprise all elements, except for SiO2 and phosphorus. Marine regression at ca. 6400 yr ago was followed by lacustrine environment, which provided the predominant accumulation of biogenic silica and organic. The aeolian activity related to climatic cooling and marine regressions led to the formation of coarse-grained interlayers in silty sequence, which are clearly expressed by geochemical characteristics. The fresh-water facies show a distinct grain-size rhythmicity traced by Al2O3/(CaO + Na2O) ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. K. Adamson, T. Lane, M. Carney, T. Bishop and C. Delaney, “High-resolution proglacial lake records of pre-Little Ice Age glacier advance, northeast Greenland,” Boreas 48, 535–550 (2019). https://doi.org/. 12361. ISSN 0300–9483.https://doi.org/10.1111/bor

  2. E. G. Ameh, “Geochemistry and multivariate statistical evaluation of major oxides, trace and rare earth elements in coal occurrences and deposits around Kogi east, Northern Anambra Basin, Nigeria,” Int. J. Coal Sci. Technol. 6 (2), 260–273 (2019).

    Article  Google Scholar 

  3. P. Anderson, P. Minyuk, A. Lozhkin, M. Cherepanova, V. Borkhodoev, and B. Finney, “A multiproxy record of Holocene environmental changes from the northern Kuril Islands (Russian Far East),” J. Paleolimnol. 54, 379–393 (2015).

    Article  Google Scholar 

  4. C. Archer, P. Noble, M. R. Rosen, L. Sagnotti, F. Florindo, S. Mensing, G. Piovesan, ad A.M. Michetti, “Lakes as paleoseismic records in a seismically-active, low-relief area (Rieti Basin, central Italy),” Quatern. Sci. Rev. 211, 186–207 (2019).

    Article  Google Scholar 

  5. H. W. Arz, S. Gerhardt, J. Pätzold, and U. Röhl, “Millennial-scale changes of surface– and deep–water flow in the western tropical Atlantic linked to Northern Hemisphere high–latitude climate during the Holocene,” Geology 29, 239–242 (2001).

    Article  Google Scholar 

  6. U. Avşar, “Sedimentary geochemical evidence of historical tsunamis in the Eastern Mediterranean from Ölüdeniz Lagoon, SW Turkey,” J. Paleolimnol. 61, 373–385 (2019).

    Article  Google Scholar 

  7. C. Babeesh, H. Achyuthan, and T. P. Sajeesh, “Geochemical signatures of Karlad Lake sediments, North Kerala: source area weathering and provenance,” J. Geol. Soc. India 92, 177–186 (2018).

    Article  Google Scholar 

  8. B. Bellwald, B. O. Hjelstuen, H. P. Sejrup, T. Stokowy, and J. Kuvas, “Holocene mass movements in west and mid-Norwegian fjords and lakes,” Mar. Geol. 407, 192–212 (2019).

    Article  Google Scholar 

  9. S. Bertrand, F. Charlet, B. Charlier, V. Renson, and N. Fagel, “Climate variability of southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40° S),” J. Paleolimnol. 39, 179–195 (2008).

    Article  Google Scholar 

  10. A. Z. E. Bessa, G. Ngueutchoua, and P.-D. Ndjigui, “Mineralogy and geochemistry of sediments from Simbock Lake, Yaoundé area (southern Cameroon): provenance and environmental implications,” Arab. J. Geosci. 11, 710 (2018). https://doi.org/10.1007/s12517-018-4061-x

    Article  Google Scholar 

  11. M. P. Bokhorst, C. J. Beets, S. B. Markovic, N. P. Gerasimenko, Z. N. Matviishina, and M. Frechen, “Pedo-chemical climate proxies in Late Pleistocene Serbiane–Ukrainian loess sequences,” Quatern. Int. 198, 113–123 (2009).

    Article  Google Scholar 

  12. G. C. Bond, W. Showers, M. Cheseby, R. Lotti, P. Almasi, P. deMenocal, P. Priore, H. Cullen, I. Hajdas, and G. Bonani, “A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–1266 (1997).

    Article  Google Scholar 

  13. V. Ya. Borkhodoev, “Accuracy of the fundamental parameter method for X–ray fluorescence analysis of rocks,” X-Ray Spectrom. 31, 209–218 (2002).

    Article  Google Scholar 

  14. V. Ya. Borkhodoev, “X-ray fluorescence determination of rubidium, strontium, yttrium, zirconium and niobium in rocks,” J. Trace Microprobe 16, 341–352 (1998).

    Google Scholar 

  15. J. F. Bovle, “Inorganic geochemical methods in paleolimnology,” In Tracking Environmental Change Using Lake Sediments. Volume 2. Physical and Geochemical Methods, Ed. by M. W. Last and J. P. Smol (Kluwer Academic Publishers, 2002), pp. 83–142.

  16. E. Brown, “Lake Malawi’s response to “megadrought” terminations: sedimentary records of flooding, weathering and erosion,” Palaeogeogr. Palaeocl. 303, 120–125 (2011).

    Article  Google Scholar 

  17. Ö. Bulkan, M. N. Yalçın, and H. Wilkes, “Geochemistry of Marmara Lake sediments—Implications for Holocene environmental changes in Western Turkey,” Quatern. Int. 486, 199–214 (2018).

    Article  Google Scholar 

  18. C. Chagué-Goff, W. Szczuciński, and T. Shinozaki, “Applications of geochemistry in tsunami research: A review,” Earth-Sci. Rev. 165, 203–244 (2017).

    Article  Google Scholar 

  19. X.-Y. Chen, D. McLean, S. P. E. Blockley, P. E. Tarasov, Y.-G. Xu, and M. A. Menzies, “Developing a Holocene tephrostratigraphy for northern Japan using the sedimentary record from Lake Kushu, Rebun Island,” Quaternary Sci. Rev. 215, 272–292 (2019).

    Article  Google Scholar 

  20. W. Davison, “Iron and manganese in lakes,” Earth-Sci. Rev. 34, 119–163 (1993).

    Article  Google Scholar 

  21. C. M. Fedo, H. W. Nesbitt, and G. M. Young, “Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance,” Geology 23, 921–924 (1995).

    Article  Google Scholar 

  22. P. W. Fralick and B. I. Kronberg, “Geochemical discrimination of elastic sedimentary rock sources,” Sediment. Geol. 113, 111–124 (1997).

    Article  Google Scholar 

  23. M. Frugone-Álvarez, C. Latorre, S. Giralt, J. Polanco-Martínez, P. Bernárdez, B. Oliva-Urcia, A. Maldonado, M. L. Carrevedo, A. Moreno, A. Delgado Huertas, R. Prego, F. Barreiro-Lostres, and B. Valero-Garcés, “A 7000-year high resolution lake sediment record from coastal central Chile (Lago Vichuquén, 34°S): implications for past sea level and environmental variability,” J. Quat. Sci. 12, 830–844 (2017).

    Article  Google Scholar 

  24. K. S. Ganzei, Landscapes and Physicogeographical Zoning of the Kuril Islands (Dal’nauka, Vladivostok, 2010) [in Russian].

    Google Scholar 

  25. E. L. Goldberg, M. A. Phedorin, M. A. Grachev, V. A. Bobrov, I. P. Dolbnya, O. M. Khlystov, O. V. Levina, and G. A. Ziborova, “Geochemical signals of orbital forcing in the records of paleoclimates found in the sediments of Lake Baikal,” Nucl. Instrum. Meth. A 448, 384–393 (2000).

    Article  Google Scholar 

  26. O. Hammer, D. A. T. Harper, and P. D. Ryan, “PAST: Paleontologicalstatistics software package for education and data analysis,” Palaeontol. Electron. 4 (1), 9 (2001) p.

  27. O. Heiri, A. F. Lotter, and G. Lemcke, “Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results,” J. Paleolimnol. 25, 101–110 (2001).

    Article  Google Scholar 

  28. http://www.geokniga.org/maps/10037

  29. F. S. Hu, D. Kaufman, S. Yoneji, D. Nelson, A. Shemesh, Y. Huang, J. Tian, G. Bond, B. Clegg, and T. Brown, “Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic,” Science 301, 1890–1893 (2003).

    Article  Google Scholar 

  30. A. M. Korotky, N. G. Razjigaeva, T. A. Grebennikova, L. A. Ganzey, V. B. Bazarova, L. D. Sulerzhitsky, and K. A. Lutaenko, “Middle- and late-Holocene environments and vegetation history of Kunashir Island, Kurile Islands, northwestern Pacific,” Holocene 10, 311–331 (2000).

    Article  Google Scholar 

  31. M. Leinen, “A normative calculation technique for determining opal in deep–sea sediments,” Geochim. Cosmochim. Acta 41, 671–676 (1977).

    Article  Google Scholar 

  32. H. Li, B. Liu, X. Liu, L. Meng, L. Cheng, and H. Wang, “Mineralogy and inorganic geochemistry of the Es4 shales of the Damintun Sag, northeast of the Bohai Bay Basin: Implication for depositional environment,” Mar. Petrol. Geol. 110, 886–900 (2019).

    Article  Google Scholar 

  33. A. Lozhkin, P. Minyuk, M. Cherepanova, P. Anderson, and B. Finney, “Holocene environments of central Iturup Island, southern Kuril archipelago, Russian Far East,” Quatern. Res. 88(1), 23–38 (2017).

    Article  Google Scholar 

  34. M. Melles, J. Brigham–Grette, P. S. Minyuk, N. R. Nowaczyk, V. Wennrich, R. M. DeConto, P. M. Anderson, A. A. Andreev, A. Coletti, T. L. Cook, E. Haltia-Hovi, M. Kukkonen, A. V. Lozhkin, P. Rosén, P. Tarasov, H. Vogel, and B. Wagner, “2.8 million years of Arctic climate change from Lake El’gygytgyn, NE Russia,” Science 337, 315–320 (2012).

    Article  Google Scholar 

  35. P. S. Minyuk and V. Ya. Borkhodoev, “Geochemistry of sediments from Lake Grand, Northeast Russia,” Geochem. Int. 54(9), 807–816 (2016).

    Article  Google Scholar 

  36. P. S. Minyuk, V. Y. Borkhodoev, and V. Wennrich, “Inorganic geochemistry data from Lake El’gygytgyn sediments: marine isotope stages 6–11,” Clim. Past 10, 467–485 (2014).

    Article  Google Scholar 

  37. P. S. Minyuk, T. V. Subbotnikova, P. M. Anderson, and A. V. Lozhkin, “Rock magnetic properties of the Lake Pernatoe sediments (Paramushir Island) as an indicator of the changes in sedimentation conditions,” Izv. Phys. Solid Earth 49, 120–129 (2013).

    Article  Google Scholar 

  38. S. Moreira, P. J. M. Costa, C. Andrade, C. P. Lira, M. C. Freitas, M. A. Oliveira, and G.-J. Reichart, “High resolution geochemical and grain-size analysis of the AD 1755 tsunami deposit: Insights into the inland extent and inundation phases,” Mar. Geol. 390, 94–105 (2017).

    Article  Google Scholar 

  39. H. W. Nesbitt and G. M. Young, “Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations,” Geochim. Cosmochim. Acta 48, 1523–1534 (1984).

    Article  Google Scholar 

  40. W. Rapuc, P. Sabatier, F. Arnaud, A. Palumbo, A.-L. Develle, J.-L. Reyss, L. Augustin, E. Régnier, A. Piccin, E. Chapron, J.-P. Dumoulin, and U. von Grafenstein, “Holocene–long record of flood frequency in the Southern Alps (Lake Iseo, Italy) under human and climate forcing,” Global Planet. Change 175, 160–172 (2019).

    Article  Google Scholar 

  41. N. G. Razjigaeva, T. A. Grebennikova, L. A. Ganzey, L. M. Mokhova, and V. B. Bazarova, “The role of global and local factors in determining the middle to late Holocene environmental history of the South Kurile and Komandar Islands, northwestern Pacific,” Palaeogeogr. Palaeocl. 209, 313–333 (2004).

    Article  Google Scholar 

  42. N. G. Razzhigaeva and L. A. Ganzei, “Coastal Dune Evolution under Sea Level Changes,” Oceanology 45 (1), 140–150 (2005).

    Google Scholar 

  43. A. B. Ronov, and A. A. Migdisov, “Main geochemical features of hydrolysate elements during weathering and sedimentation,” Geokhimiya, No, 2, 131–158 (1965).

    Google Scholar 

  44. B. P. Ruxton, “Measures of degree of chemical weathering of rocks,” J. Geol. 76, 518–527 (1968).

    Article  Google Scholar 

  45. M. A. Sauerbrey, O. Juschus, A. C. Gebhardt, V. Wennrich1, N. R. Nowaczyk, and M. Melles, “Mass movement deposits in the 3.6Ma sediment record of Lake El’gygytgyn, Far East Russian Arctic,” Clim. Past 9, 1949–1967 (2013).

    Article  Google Scholar 

  46. M. Schmidt, C. Leipe, F. Becker, T. Goslar, P. Hoelzmann, J. Mingram, S. Muller, R. Tjallingii, M. Wagner, and P. E. Tarasov, “A multi–proxy palaeolimnological record of the last 16,600 years from coastal Lake Kushu in northern Japan,” Palaeogeogr. Palaeocl. 514, 613–626 (2019).

    Article  Google Scholar 

  47. F. C. Speranza, S. Giralt, L. C. Lupo, J. J. Kulemeyer, E. Á. de los Pereira, and B. C. López, “Paleoenvironmental reconstruction of the semi–arid Chaco region of Argentina based on multiproxy lake records over the last six hundred years,” Palaeogeogr. Palaeocl. 524, 85–100 (2019).

    Article  Google Scholar 

  48. State Geological Map of the Russian Federation on a Scale 1 : 200 000. 2 nd Edition. Kuril Series. L–55–XXXII, XXVIII, XXXIV, Ed. By V. V. Udodov, P. Yu. Kovtunovich, and A. D. Safronov (St.Petersb. Kartograf. Fabrika VSEGEI, St. Petersburg, 2002a) [in Russian].

  49. State Geological Map of the Russian Federation on a Scale 1 : 200 000. 1Map of Mineral Resources. 2 nd Edition. Kuril Series. L–55–XXXII, XXVIII, XXXIV, Ed. By V. V. Udodov, P. Yu. Kovtunovich, and A. D. Safronov (St.Petersb. Kartograf. Fabrika VSEGEI, St. Petersburg, 2002b) [in Russian]

  50. W. Sun, E. Liu, E. Zhang, and J. Shen, “Geochemistry of the Holocene sediments of Lake Chenghai, SW China, and its implications for paleoenvironmental reconstruction,” Quatern. Int. 523, 80–88 (2019).

    Article  Google Scholar 

  51. K. Tanaka, F. Akagawa, K. Yamamoto, Y. Tani, I. Kawabe, and T. Kawai, “Rare earth element geochemistry of Lake Baikal sediment: its implication for geochemical response to climate change during the Last Glacial/Interglacial transition,” Quatern. Sci. Rev. 26, 1362–1368 (2007).

    Article  Google Scholar 

  52. H. Von Eynatten, R. Tolosana-Delgado, and V. Karius, “Sediment generation in modern glacial setting: Grain–size and source–rock control on sediment composition,” Sediment. Geol. 280, 80–92 (2012).

    Article  Google Scholar 

  53. W. Wei and T. J. Algeo, “Elemental proxies for paleosalinity analysis of ancient shales and mudrocks,” Geochim. Cosmochim. Acta, (2019). https://doi.org/10.1016/j.gca.2019.06.034

  54. H. E. Wright, Jr., D. H. Mann, and P. H. Glaser, “Piston corers for peat and lake sediments,” Ecology 65, 657–659 (1984).

    Article  Google Scholar 

  55. H.Il. Yoon, K.-C. Yoo, Y.-S. Bak, S. H. Lim, Y. Kim, and J. Il. Lee, “Late Holocene cyclic glaciomarine sedimentation in a subpolar fjord of the South Shetland Islands, Antarctica, and its paleoceanographic significance: Sedimentological, geochemical, and paleontological evidence,” Geol. Soc. Am. Bull. 122, 1298–1307 (2010).

    Article  Google Scholar 

  56. Ya. E. Yudovich and M. P. Ketris, Geochemical Indicators of Lithogenesis (Lithological Geochemistry) (Geoprint, Syktyvkar, 2011) [in Russian].

    Google Scholar 

  57. Ya. E. Yudovich and M. P. Ketris, Manganese Geochemistry (IG Komi NTS UrO RAS, Syktyvkar, 2014) [in Russian].

    Google Scholar 

  58. Ya. E. Yudovich, M. P. Ketris, and N. V. Rybina, Titanium Geochemistry (IG Komi NTS UrO RAS, Syktyvkar, 2018) [in Russian].

Download references

ACKNOWLEDGMENTS

We are grateful to E. M. Goryacheva for the performance of mineralogical analyses and two reviewers, whose comments significantly improved the manuscript.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 19-05-00477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Minyuk.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minyuk, P.S., Borkhodoev, V.Y. Response of Geochemical Characteristics on the Environmental Changes in the Holocene: Data on Bottom Sediments of Lake Maloe, Iturup Island. Geochem. Int. 59, 422–434 (2021). https://doi.org/10.1134/S0016702921040054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921040054

Keywords:

Navigation