Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 13, 2021

The dual cone of sums of non-negative circuit polynomials

  • Mareike Dressler , Helen Naumann and Thorsten Theobald EMAIL logo
From the journal Advances in Geometry

Abstract

For a non-empty, finite subset AβŠ†N0n let Csonc(π’œ) ∈ ℝ[x1, . . . , xn] be the cone of sums of non-negative circuit polynomials with support π’œ. We derive a representation of the dual cone (Csonc(π’œ))βˆ— and deduce an optimality criterion for sums of non-negative circuit polynomials in polynomial optimization.

MSC 2010: 14P05; 52A20; 90C30

Acknowledgements

We thank the referees for their criticism and suggestions which helped to improve the presentation.

  1. Communicated by: M. Joswig

References

[1] G. Averkov, Optimal size of linear matrix inequalities in semidefinite approaches to polynomial optimization. SIAM J. Appl. Algebra Geom. 3 (2019), 128–151. MR3922906 Zbl 1420.9004310.1137/18M1201342Search in Google Scholar

[2] G. Blekherman, P. A. Parrilo, R. R. Thomas, editors, Semidefinite optimization and convex algebraic geometry, vol. 13 of MOS-SIAM Series on Optimization. Math. Optimization Society, Philadelphia, PA 2013. MR3075433 Zbl 1260.9000610.1137/1.9781611972290Search in Google Scholar

[3] S. Boyd, L. Vandenberghe, Convex optimization. Cambridge Univ. Press 2004. MR2061575 Zbl 1058.9004910.1017/CBO9780511804441Search in Google Scholar

[4] V. Chandrasekaran, P. Shah, Relative entropy relaxations for signomial optimization. SIAM J. Optim. 26 (2016), 1147–1173. MR3499559 Zbl 1345.9006610.1137/140988978Search in Google Scholar

[5] V. Chandrasekaran, P. Shah, Relative entropy optimization and its applications. Math. Program. 161 (2017), 1–32. MR3592772 Zbl 1357.8103710.1007/s10107-016-0998-2Search in Google Scholar

[6] R. Chares, Cones and Interior-Point Algorithms for Structured Convex Optimization Involving Powers and Exponentials. PhD thesis, UniversitΓ© Catholique de Louvain, Louvain-la-Neuve, Belgium, 2009.Search in Google Scholar

[7] M. Dressler, S. Iliman, T. de Wolff, A Positivstellensatz for sums of nonnegative circuit polynomials. SIAM J. Appl. Algebra Geom. 1 (2017), 536–555. MR3691721 Zbl 1372.1405110.1137/16M1086303Search in Google Scholar

[8] J. ForsgΓ₯rd, T. de Wolff, The algebraic boundary of the SONC cone. Preprint 2019, arXiv:1905.04776 [math.AG]Search in Google Scholar

[9] S. Iliman, T. de Wolff, Amoebas, nonnegative polynomials and sums of squares supported on circuits. Res. Math. Sci. 3 (2016), Paper No. 9, 35 pages. MR3481195 Zbl 1415.1107110.1186/s40687-016-0052-2Search in Google Scholar

[10] S. Iliman, T. de Wolff, Lower bounds for polynomials with simplex Newton polytopes based on geometric programming. SIAM J. Optim. 26 (2016), 1128–1146. MR3498517 Zbl 1380.1200110.1137/140962425Search in Google Scholar

[11] O. Karaca, G. Darivianakis, P. Beuchat, A. Georghiou, J. Lygeros, The REPOP toolbox: Tackling polynomial optimization using relative entropy relaxations. In: 20th IFAC World Congress, IFAC PapersOnLine, volume 50(1), 11652–11657, Elsevier 2017.10.1016/j.ifacol.2017.08.1669Search in Google Scholar

[12] L. KatthΓ€n, H. Naumann, T. Theobald, A unified framework of SAGE and SONC polynomials and its duality theory. Preprint 2019, arXiv:1903.08966 [math.AG]Search in Google Scholar

[13] J. B. Lasserre, Moments, positive polynomials and their applications, volume 1 of Imperial College Press Optimization Series. Imperial College Press, London 2010. MR2589247 Zbl 1211.90007Search in Google Scholar

[14] M. Laurent, Sums of squares, moment matrices and optimization over polynomials. In: Emerging applications of algebraic geometry, volume 149 of IMA Vol. Math. Appl., 157–270, Springer 2009. MR2500468 Zbl 1163.1302110.1007/978-0-387-09686-5_7Search in Google Scholar

[15] R. Murray, V. Chandrasekaran, A. Wierman, Newton polytopes and relative entropy optimization. Preprint 2018, arXiv:1810.01614 [math.CO]Search in Google Scholar

[16] B. Reznick, Some concrete aspects of Hilbert’s 17th Problem. In: Real algebraic geometry and ordered structures (Baton Rouge, LA, 1996), volume 253 of Contemp. Math., 251–272, Amer. Math. Soc. 2000. MR1747589 Zbl 0972.1102110.1090/conm/253/03936Search in Google Scholar

[17] R. Schneider, Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2014. MR3155183 Zbl 1287.52001Search in Google Scholar

[18] J. Wang, Nonnegative polynomials and circuit polynomials. Preprint 2018, arXiv:1804.09455 [math.CO]Search in Google Scholar

[19] J. Wang, On supports of sums of nonnegative circuit polynomials. Preprint 2018, arXiv:1809.10608 [math.CO]Search in Google Scholar

Received: 2018-10-27
Revised: 2019-08-22
Published Online: 2021-03-13
Published in Print: 2021-04-27

Β© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/advgeom-2020-0019/html
Scroll to top button