Skip to main content
Log in

Balanced harvesting in two predators one prey system

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this research, we discuss balancing two essential ecosystem services, known as resilience and yield, in a harvested two predators one prey system. We study how these two ecosystem services respond to different types of harvesting plans applied to the system. In individual harvesting, we observe that prey harvesting is suitable for generating more yield while either predator harvesting gives more resilience. Several patterns are possible based on the intensity of harvesting efforts applied to prey or the predator in simultaneous harvesting. This study shows that a balanced harvest between prey and predators may give more than the selective harvesting of any species yielding and stabilizing the ecosystem. Even if this fair strategy is not a cooperative situation for both resilience and yield, it may be the most favorable approach to scale those services. Finally, we may state that it would help us correlate the safest position (corresponds to the maximizing resilience yield) and the good views (which corresponds to the maximum sustainable return) to safeguard our ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Araki, K., Masaoka, T., Okamoto, H., Nagoya, H., Naramura, H., Muto, K., Oku, H., Aoki, J.Y., Suzuki, T.: Experimental hybridization and competition between Atlantic Salmon (Salmo salar) and native Salmonid Species in Japan. Bull. Jap. Fish. Res. Edu. Agen. 45, 75–87 (2017)

    Google Scholar 

  2. Birkhoff, G., Rota, G.C.: Ordinary differential equations. Ginn, Boston (1982)

    MATH  Google Scholar 

  3. Breed, G.A., Don Bowen, W., Leonard, M.L.: Behavioral signature of intraspecific competition and density dependence in colony-breeding marine predators. Ecol. Evol. 3(11), 3838–3854 (2013)

    Article  Google Scholar 

  4. Britten, G.L., Dowd, M., Minto, C., Ferretti, F., Boero, F., Lotze, H.K.: Predator decline leads to decreased stability in a coastal fish community. Ecol. Lett. 17(12), 1518–1525 (2014)

    Article  Google Scholar 

  5. Clark, C.: Mathematical bioeconomics. John Wiley and Sons Inc., New York (1990)

    MATH  Google Scholar 

  6. Clark, C.W.: The worldwide crisis in fisheries: economic models and human behavior. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  7. Djilali, S., Bentout, S.: Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior. Acta. Appl. Math. 169, 125–143 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Djilali, S.: Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition. Math. Meth. Appl. Sci. 43, 2233–2250 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunn, R.P., Baskett, M.L., Hovel, K.A.: Interactive effects of predator and prey harvest on ecological resilience of rocky reefs. Ecol. Appl. 27(6), 1718–1730 (2017)

    Article  Google Scholar 

  10. Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J., Carpenter, S.R., Essington, T.E., Holt, R.D., Jackson, J.B., et al.: Trophic downgrading of planet earth. Science 333(6040), 301–306 (2011)

    Article  Google Scholar 

  11. Froese, R., Walters, C., Pauly, D., Winker, H., Weyl, O.L., Demirel, N., Tsikliras, A.C., Holt, S.J.: A critique of the balanced harvesting approach to fishing. ICES J. Mar. Sci. 73(6), 1640–1650 (2015)

    Article  Google Scholar 

  12. Geček, S., Legović, T.: Impact of maximum sustainable yield on competitive community. J. Theor. Biol. 307, 96–103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghosh, B., Kar, T.: Possible ecosystem impacts of applying maximum sustainable yield policy in food chain models. J. Theor. Biol. 329, 6–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghosh, B., Kar, T.: Sustainable use of prey species in a prey-predator system: jointly determined ecological thresholds and economic trade-offs. Ecol. Model. 272, 49–58 (2014)

    Article  Google Scholar 

  15. Ghosh, B., Pal, D., Legović, T., Kar, T.: Harvesting induced stability and instability in a tri-trophic food chain. Math. Biosci. 304, 89–99 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghosh, B., Paul, P., Kar, T.: Extinction scenarios in exploited system: combined and selective harvesting approaches. Ecol. Complex. 19, 130–139 (2014)

    Article  Google Scholar 

  17. Gunderson, L.H., Allen, C.R., Holling, C.S.: Foundations of ecological resilience. Island Press, Washington (2012)

    Google Scholar 

  18. Hill, S., Reid, K., Thorpe, S., Hinke, J., Watters, G.: A compilation of parameters for ecosystem dynamics models of the scotia sea-antarctic peninsula region. Ccamlr Sci. 14, 1–25 (2007)

    Google Scholar 

  19. Holling, C.S.: Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4(1), 1–23 (1973)

    Article  Google Scholar 

  20. Kar, T., Ghosh, B.: Impacts of maximum sustainable yield policy to prey-predator systems. Ecol Modell. 250, 134–142 (2013)

    Article  Google Scholar 

  21. Kar, T.K.: Management of a fishery based on continuous fishing effort. Nonlinear Anal. Real World Appl. 5(4), 629–644 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kar, T.K., Pal, D., Ghosh, B.: Managing yield and resilience in a harvested tri-trophic food chain model. J. Theor. Biol. 469, 35–46 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Legović, T.: Impact of demersal fishery and evidence of the volterra principle to the extreme in the adriatic sea. Ecol. Model. 212(1–2), 68–73 (2008)

    Article  Google Scholar 

  24. Legović, T., Klanjšček, J., Geček, S.: Maximum sustainable yield and species extinction in ecosystems. Ecol. Model. 221(12), 1569–1574 (2010)

    Article  Google Scholar 

  25. Loeuille, N.: Influence of evolution on the stability of ecological communities. Ecol. Lett. 13(12), 1536–1545 (2010)

    Article  Google Scholar 

  26. Matsuda, H., Abrams, P.A.: Maximal yields from multispecies fisheries systems: rules for systems with multiple trophic levels. Ecol. Appl. 16(1), 225–237 (2006)

    Article  Google Scholar 

  27. McCann, K.S.: The diversity-stability debate. Nature 405(6783), 228–233 (2000)

    Article  Google Scholar 

  28. Mumby, P.J., Steneck, R.S., Adjeroud, M., Arnold, S.N.: High resilience masks underlying sensitivity to algal phase shifts of pacific coral reefs. Oikos 125(5), 644–655 (2016)

    Article  Google Scholar 

  29. Myers, R.A., Baum, J.K., Shepherd, T.D., Powers, S.P., Peterson, C.H.: Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315(5820), 1846–1850 (2007)

    Article  Google Scholar 

  30. Neubert, M., Moberg, E., Shyu, E.: Rapid evolution of dispersal and marine reserves (2014)

  31. Pal, D., Ghosh, B., Kar, T.K.: Hydra effects in stable food chain models. BioSystems 185, 104018 (2019)

    Article  Google Scholar 

  32. Paul, P., Ghosh, B., Kar, T.: Impact of species enrichment and fishing mortality in three species food chain models. Communications in Nonlinear Science and Numerical Simulation 29(1–3), 208–223 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pikitch, E.K., Santora, C., Babcock, E.A., Bakun, A., Bonfil, R., Conover, D.O., Dayton, P., others, Doukakis, P., Fluharty, D., Heneman, B., et al.: Ecosystem-based fishery management. Science 305(5682), 346-347 (2004)

  34. Pimm, S., Lawton, J.H.: On feeding on more than one trophic level. Nature 275(5680), 542–544 (1978)

    Article  Google Scholar 

  35. Reid, K., Forcada, J.: Causes of offspring mortality in the antarctic fur seal, arctocephalus gazella: the interaction of density dependence and ecosystem variability. Canadian Journal of Zoology 83(4), 604–609 (2005)

    Article  Google Scholar 

  36. Schaefer, M.B.: Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Inter-American Tropical Tuna Commission Bulletin 1(2), 23–56 (1954)

    Google Scholar 

  37. Walters, C.J., Christensen, V., Martell, S.J., Kitchell, J.F.: Possible ecosystem impacts of applying msy policies from single-species assessment. ICES Journal of Marine Science 62(3), 558–568 (2005)

    Article  Google Scholar 

  38. Wilen, C., Wilen, J.: Fishing down the food chain revisited: Modelling exploited trophic systems. Ecological Economics 79, 80–88 (2012)

    Article  Google Scholar 

  39. Zabel, R.W., Harvey, C.J., Katz, S.L., Good, T.P., Levin, P.S.: Ecologically sustainable yield: marine conservation requires a new ecosystem-based concept for fisheries management that looks beyond sustainable yield for individual fish species. American Scientist 91(2), 150–157 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Research of T.K.Kar is supported by the Council of Scientific and Industrial Research (CSIR), India(Scheme No. 25(0300)/19/EMR-II, dated: 16-05-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Jacobian matrix at the coexisting steady state corresponding to the system (1) is

$$\begin{aligned} J_{(u^{*},v^{*},w^{*})} = \left( \begin{array}{ccc} a_{11} &{} a_{12} &{} a_{13} \\ a_{21} &{} 0 &{} 0 \\ a_{31} &{} 0 &{} a_{33} \\ \end{array} \right) \end{aligned}$$

where, \(a_{11} = - \frac{r u^{*}}{K} + \dfrac{\alpha _1 u^{*} v^{*}}{(h+u^{*})^2} \), \( a_{12} =- \frac{\alpha _1 u^{*}}{h+u^{*}} \), \(a_{13} =-\alpha _2 u^{*}\), \( a_{21} = \frac{\alpha _1 h v^{*}}{(h+u^{*})^2} \), \(a_{31}=\alpha _{2} w^{*} \), and \( a_{33}= - \gamma w^{*} \).

The characteristic equation of the Jacobian matrix is

$$\begin{aligned} \lambda ^3+Q_1 \lambda ^2 +Q_2 \lambda + Q_3=0, \end{aligned}$$
(4)

where

$$\begin{aligned} Q_1=-(a_{11}+a_{33}), Q_2=-a_{12}a_{21} -a_{13}a_{31}+a_{11}a_{33}, Q_3=a_{12}a_{21}a_{33}. \end{aligned}$$

If condition-1: \(Q_1>0\),  condition-2: \(Q_3>0 \) and condition-3: \(Q_1Q_2-Q_3>0\) are fulfilled, then by the Routh-Hurwitz criterion, the eigenvalues have negative real part.

Now, \(Q_1=-(a_{11}+a_{33})= \frac{r u^{*}}{K} +\gamma w^{*}- \dfrac{\alpha _1 u^{*} v^{*}}{(h+u^{*})^2}\)

\(Q_2=-a_{12}a_{21} -a_{13}a_{31}+a_{11}a_{33}=u^{*} (\frac{\alpha _1^2 h v^{*}}{(h + u^{*})^3} + \alpha _2^2 w^{*} - \frac{\alpha _1 v^{*} w^{*} \gamma }{(h + u^{*})^2} + \frac{w^{*} \gamma r}{K})\),

\(Q_3=a_{12}a_{21}a_{33}=\frac{\alpha _1^2 h u^{*} v^{*} w^{*} \gamma }{(h + u^{*})^3}>0\)

Again, \(Q_1Q_2-Q_3=-(a_{11}+a_{33})(-a_{12}a_{21} -a_{13}a_{31}+a_{11}a_{33})-(a_{12}a_{21}a_{33}) =a_{11} a_{12} a_{21} + a_{11} a_{13} a_{31} - a_{11}^2 a_{33} + 2 a_{12} a_{21} a_{33} + a_{13} a_{31} a_{33} - a_{11} a_{33}^2=-\frac{\alpha _1^3 h (u^{*}v^{*} )^2}{(h + u^{*} )^5} - \frac{\alpha _1 \alpha _2^2 (u^{*})^2 v^{*} w^{*} }{(h + u^{*} )^2} + \frac{\alpha _1^2 (u^{*} v^{*})^2 w^{*} \gamma }{(h + u^{*} )^4}+ \alpha _2^2 u^{*} (w^{*})^2 \gamma - \frac{\alpha _1 u^{*} v^{*} w^2 \gamma ^2}{(h + u^{*} )^2} + \frac{\alpha _1^2 h (u^{*})^2 v^{*} r}{(h + u^{*} )^3 K} + \frac{\alpha _2^2 (u^{*})^2 w^{*} r}{K} - \frac{2 \alpha _1 (u^{*})^2 v^{*} w^{*} \gamma r}{(h + u^{*} )^2 K} + \frac{u^{*} (w^{*})^2 \gamma ^2 r}{K} + \frac{(u^{*})^2 w^{*} \gamma r^2}{K^2} \)

We see that the second condition is satisfied as \(Q_3\) is positive. We observe that the first and the third condition is not fulfilled as the signs of \(Q_1\) and \(Q_1 Q_2-Q_3\) are not identified as positive by inspection. But using the last condition of each Proposition 3, we see that \(a_{11}<0\) and hence \(Q_1, Q_2, Q_3\) and \(Q_1Q_2 - Q_3\) are all positive. Thus, all the conditions of the Routh-Hurwitz criterion are satisfied. Hence, the interior equilibrium is asymptotically stable.

Similarly, using the last condition of each Proposition 4 , 5 and 6, we can show that the interior equilibrium is asymptotically stable in each case.

Next, to determine the resilience, we have to evaluate the roots of the above characteristic equation and they are \( -\dfrac{Q_1}{3} - \frac{2^{1/3}}{3} \frac{(-Q_1^2 + 3 Q_2)}{ee}+\frac{ee}{3 2^{1/3}}\), \(-\dfrac{Q_1}{3} - \omega ^2 \frac{2^{1/3}}{3} \frac{(-Q_1^2 + 3 Q_2)}{ee}+\omega \frac{ee}{3 2^{1/3}}\), and \(-\dfrac{Q_1}{3} - \omega \frac{ 2^{1/3}}{3} \frac{(-Q_1^2 + 3 Q_2)}{ee}+ \omega ^2\frac{ ee}{3 2^{1/3}}\), where, \(ee=(-2 Q_1^3 + 9 Q_1 Q_2 \!-\! 27 Q_3 \!+\! 3 \sqrt{3} \sqrt{-Q_1^2 Q_2^2 + 4 Q_2^3 \!+\! 4 Q_1^3 Q_3 \!-\! 18 Q_1 Q_2 Q_3 \!+\! 27 Q_3^2} )^{1/3}.\) Following Pimm and Lawton [34] and Kar et al. [22], we can determine the largest real part of all the eigenvalues and so the resilience as its absolute value.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Pal, D., Kar, T.K. et al. Balanced harvesting in two predators one prey system. J. Appl. Math. Comput. 68, 839–861 (2022). https://doi.org/10.1007/s12190-021-01538-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01538-5

Keywords

Mathematics Subject Classification

Navigation