Skip to main content
Log in

Modern Methods of Neutron Radiography and Tomography in Studies of the Internal Structure of Objects

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The fundamentals, experimental possibilities, and applications of the methods of neutron radiography and tomography in studies of the structural features of large objects in various fields are reviewed. The main principles of neutron imaging are considered. Specialized experimental stations at the National Research Centre “Kurchatov Institute” and the Joint Institute for Nuclear Research are described, and their main parameters are presented. The experimental capabilities of these neutron facilities, including methodological approaches to variation of the neutron radiographic contrast with neutron energy dispersion, are described. A detailed review of the scientific results obtained on neutron radiography and tomography facilities is presented; these results concern engineering and technological objects, internal structure of meteorites, paleontological samples, and cultural heritage objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. H. D. Tyufyakov and A. S. Shtan’, Fundamentals of Neutron Radiography (Atomizdat, Moscow, 1975) [in Russian].

    Google Scholar 

  2. N. Kardjilov, E. Lehmann, M. Strobl, et al., Neutron Imaging 21, 329 (2017).

    Google Scholar 

  3. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, Ed. by R. A. Meyers, Vols. S1–S3 (Wiley, UK, 2009).

    Google Scholar 

  4. Neutron Imaging and Applications: A Reference for the Imaging Community, Ed. by I. S. Anderson (Springer, US, 2009).

    Google Scholar 

  5. M. Strobl, I. Manke, N. Kardjilov, et al., J. Phys. D 42, 243001 (2009).

    Article  Google Scholar 

  6. N. Kardjilov, I. Manke, A. Hilger, et al., Mater. Today 14, 248 (2011).

    Article  Google Scholar 

  7. B. Schillinger, E. Lehmann, and P. Vontobel, Phys. B: Condens. Matter 276–278, 59 (2000).

    Article  Google Scholar 

  8. J. Chadwick, Nature 129, 312 (1932).

    Article  Google Scholar 

  9. J. S. Brenizer, Physics 43, 10 (2013).

    Google Scholar 

  10. H. Kallmann and E. Kuhn, United States (Patent Document) 2 (186), 757 (1940).

  11. H. Kallmann, Research 1, 250 (1948).

    Google Scholar 

  12. S. P. Wang, C. G. Shull, and W. C. Phillips, Rev. Sci. Instrum. 33 (1), 126 (1962).

    Article  Google Scholar 

  13. H. Berger, Neutron Radiography: Methods, Capabilities, and Applications (Elsevier, Amsterdam, 1965).

    Google Scholar 

  14. H. Berger, Mater. Eval. 24, 475 (1966).

    Google Scholar 

  15. Yu. F. Babikova, A. A. Gusakov, V. M. Minaev, et al., Analytical Autoradiography (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  16. Neutron Radiography: Proceedings of the First World Conference, San Diego, California, U.S.A., December 7–10, 1983, Ed. by J. Barton and P. von der Hardt (D. Reidel, San Diego CA, 1983).

    Google Scholar 

  17. P Von Der. Hardt and H. Röttger, Principles and Practice of Neutron Radiography. Neutron Radiography Handbook (D. Reidel, Holland, 1981).

    Google Scholar 

  18. C. Grünzweig, D. Mannes, A. Kaestner, et al., Phys. Procedia 43, 231 (2013).

    Article  Google Scholar 

  19. N. Kardjilov, A. Hilger, I. Manke, et al., Nucl. Instrum. Methods Phys. Res. A 605, 13 (2009).

    Article  Google Scholar 

  20. M. Laaß, B. Schillinger, and I. Werneburg, Phys. Procedia 88, 100 (2017).

    Article  Google Scholar 

  21. A. A. Kaloyan, E. S. Kovalenko, A. V. Pakhnevich, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8 (6), 1093 (2014).

    Article  Google Scholar 

  22. A. Kaestner, P. Vontobel, and E. Lehman, Neutron Imaging Methods in Geoscience. Advances in Computed Tomography for Geomaterials (Wiley, USA, 2013).

    Google Scholar 

  23. D. X. Liu, J. Wang, K. Pan, et al., Angew. Chem. Int. Ed. 53, 9498 (2014).

    Article  Google Scholar 

  24. E. Perfect, C.-L. Cheng, M. Kang, et al., Earth Sci. Rev. 129, 120 (2014).

    Article  Google Scholar 

  25. Neutron Methods for Archaeology and Cultural Heritage, Ed. by N. Kardjilov and G. Festa (Springer, 2017).

    Google Scholar 

  26. E. H. Lehmann, J. Imaging 3 (4), 52 (2017).

    Article  Google Scholar 

  27. M. Strobl, Phys. Procedia 69, 18 (2015).

    Article  Google Scholar 

  28. H. Z. Bilheux, K. W. Herwig, S. Keener, et al., Phys. Procedia 69, 55 (2015).

    Article  Google Scholar 

  29. V. E. Khvostionov and V. S. Yaskevich, Fourth World Conference on Neutron Radiography (WCNR-4) (Gordon and Breach, 1993), p. 257.

  30. N. L. Mitrofanov, K. M. Podurets, V. A. Somenkov, et al., Patent SU 1402871 A1 (June 15, 1988).

  31. K. M. Podurets, V. A. Somenkov, and S. Sh. Shil’shtein, Sov. Tech. Phys. 34 (8), 654 (1989).

    Google Scholar 

  32. V. I. Mikerov, I. A. Zhitnik, I. A. Ignat’ev, et al., Phys. Scripta, No. 57, 190 (1995).

    Google Scholar 

  33. V. I. Mikerov, Patent RU 2 502 986 C1 (2013).

  34. E. S. Kovalenko, K. M. Podurets, V. P. Glazkov, et al., Instrum. Exp. Tech. 57 (5), 531 (2014).

    Article  Google Scholar 

  35. V. A. Somenkov, V. P. Glazkov, V. T. Em, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 13 (5), 870 (2019).

    Article  Google Scholar 

  36. D. P. Kozlenko, S. E. Kichanov, E. V. Lukin, et al., Phys. Procedia 69, 87 (2015).

    Article  Google Scholar 

  37. D. P. Kozlenko, S. E. Kichanov, E. V. Lukin, et al., Phys. Part. Nucl. Lett. 13, 346 (2016).

    Article  Google Scholar 

  38. E. V. Lukin, D. P. Kozlenko, S. E. Kichanov, et al., Phys. Procedia 69, 271 (2015).

    Article  Google Scholar 

  39. E. H. Lehmann, G. Frei, P. Vontobel, et al., Nucl. Instrum. Methods Phys. Res. A 603, 429 (2009).

    Article  Google Scholar 

  40. I. I. Gurevich and L. V. Tarasov, Physics of Low-Energy Neutrons (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  41. J. Radon, Ber. Sachsische Akad. Wiss. Leipzig, Math.-Phys. Kl 29, 262 (1917).

    Google Scholar 

  42. F. Nattere, The Mathematics of Computerized Tomography (Society for Industrial and Applied Mathematics, 2001).

    Book  Google Scholar 

  43. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 1987).

    MATH  Google Scholar 

  44. Neutron Radiography: Proceedings of the First World Conference, San Diego, California, U.S.A., December 7–10, 1983, Ed. by J. Barton and P. von der Hardt (Springer, Dordrecht).

  45. B. E. Allman, P. J. McMahon, K. A. Nugent, et al., Nature 408, 158 (2000).

    Article  Google Scholar 

  46. F. Pfeiffer, C. Grunzweig, O. Bunk, et al., Phys. Rev. Lett. 96, 215505 (2006).

    Article  Google Scholar 

  47. K. M. Podurets, V. A. Somenkov, R. R. Chistyakov, et al., Physica B 156, 694 (1989).

    Article  Google Scholar 

  48. I. Manke, N. Kardjilov, R. Schäfer, et al., Phys. Procedia 69, 404 (2015).

    Article  Google Scholar 

  49. N. Kardjilov, I. Manke, M. Strobl, et al., Nat. Phys. 4, 399 (2008).

    Article  Google Scholar 

  50. K. M. Podurets, A. V. Petrenko, V. A. Somenkov, et al., Zh. Tekh. Fiz. 64 (9), 200 (1994).

    Google Scholar 

  51. E. H. Lehmann, A. Tremsin, C. Grunzweig, et al., J. Instrum. 6, C01050 (2011).

    Google Scholar 

  52. E. Lehmann, G. Frei, G. Kuhne, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 576, 389 (2007).

    Google Scholar 

  53. P. Trtik, J. Hovind, Ch. Grüenzweig, et al., Phys. Procedia 69, 169 (2015).

    Article  Google Scholar 

  54. Practical Neutron Radiography, Ed. by J. C. Domanus (Springer, Netherlands, 1992).

  55. A. V. Rutkauskas, D. P. Kozlenko, S. E. Kichanov, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 9 (2), 317 (2015).

    Article  Google Scholar 

  56. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012).

    Article  Google Scholar 

  57. F. Brun, L. Massimi, M. Fratini, et al., Adv. Struct. Chem. Imaging 3, 4 (2017).

    Article  Google Scholar 

  58. T. Shinohara, T. Kai, K. Oikawa, et al., J. Phys.: Conf. Ser. 746, 012007 (2016).

    Google Scholar 

  59. V. N. Shvetsov, Quantum Beam Sci. 1, 6 (2017).

    Article  Google Scholar 

  60. A. S. Tremsin, J. V. Vallerga, J. B. McPhate, et al., IEEE Trans. Nucl. Sci. 60, 578 (2013).

    Article  Google Scholar 

  61. S. E. Kichanov, M. Kenessarin, M. Balasoiu, et al., Phys. Part. Nucl. Lett. 17, 73 (2020).

    Article  Google Scholar 

  62. S. E. Kichanov, K. M. Nazarov, D. P. Kozlenko, et al., Rom. J. Phys. 64, 803 (2019).

    Google Scholar 

  63. S. V. Shavkin, A. K. Shikov, I. A. Chernykh, et al., J. Phys.: Conf. Ser. 507, 022030 (2014).

    Google Scholar 

  64. A. El Abd, S. E. Kishanov, M. Taman, et al., Appl. Radiat. Isot. 156, 108970 (2020).

    Article  Google Scholar 

  65. Y. Zhao, S. Xue, S. Han, et al., Int. J. Heat Mass Transfer 124, 693 (2018).

    Article  Google Scholar 

  66. L. Kalvoda, S. E. Kichanov, M. Kučeráková, et al., J. Cold Reg. Eng. 33, 04019003 (2019).

    Article  Google Scholar 

  67. A. V. Pakhnevich, Proc. Conf. on Mineralogical Prospects 2011 (Uro RAN, Syktyvkar, 2011), p. 124.

  68. A. V. Pakhnevich, Modern Mineralogy. Proc. First Int. Internet Conf., Kazan, February 5, 2013 (Kazan University, Kazan, 2013), p. 27.

  69. A. A. Kaloyan, E. S. Kovalenko, A. V. Pakhnevich, et al., Russ. Geol. Geofiz. 58, 1435 (2017).

    Article  Google Scholar 

  70. K. K. Tarasenko, E. S. Kovalenko, A. A. Kaloyan, et al., Paleontol. J. 52, 106 (2018).

    Article  Google Scholar 

  71. K. K. Tarasenko, A. V. Lopatin, A. V. Pakhnevich, et al., Dokl. Biol. Sci. 483 (1), 222 (2018).

    Article  Google Scholar 

  72. A. V. Pakhnevich, L. V. Zaitseva, O. S. Samylina, et al., The Evolution of the Biosphere from Ancient Times to the Present Day. To the 85th Anniversary of G.A. Zavarzin, Ed. by L. M. Mel’nikov and S. V. Rozhnov (2019), p. 106.

    Google Scholar 

  73. E. R. D. Scott, Geochim. Cosmochim. Acta 41, 693 (1977).

    Article  Google Scholar 

  74. S. E. Kichanov, D. P. Kozlenko, E. V. Lukin, et al., Meteorit. Planet. Sci. 53, 2155 (2018).

    Article  Google Scholar 

  75. S. E. Kichanov, D. P. Kozlenko, A. K. Kirillov, et al., SN Appl. Sci. 1 (12), 1563 (2019).

    Google Scholar 

  76. K. Janssens and R. Van Grieken, Non-Destructive Micro Analysis of Cultural Heritage Materials (Elsevier, Amsterdam, 2005).

    Google Scholar 

  77. Neutron Methods for Archaeology and Cultural Heritage, Ed. by N. Kardjilov and G. Festa (Springer, Switzerland, 2016).

    Google Scholar 

  78. J. Teixeira, R. Magli, and C. Loupiac, Eur. J. Mineral. 201527, 289 (2015).

    Article  Google Scholar 

  79. S. Kichanov, I. Saprykina, D. Kozlenko, et al., J. Imaging 4, 25 (2018).

    Article  Google Scholar 

  80. I. A. Saprykina, S. E. Kichanov, and D. P. Kozlenko, Crystallogr. Rep. 64 (1), 177 (2019).

    Article  Google Scholar 

  81. E. Yu. Tereshchenko, N. N. Kolobylina, E. S. Kovalenko, et al., World Nondestr. Test. 21, 17 (2018).

    Google Scholar 

  82. M. G. Abramzon, I. A. Saprykina, S. E. Kichanov, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12 (1), 114 (2018).

    Article  Google Scholar 

  83. S. E. Kichanov, K. M. Nazarov, D. P. Kozlenko, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11 (3), 585 (2017).

    Article  Google Scholar 

  84. B. A. Bakirov, S. E. Kichanov, R. Kh. Khramchenkova, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 14, 376 (2020).

    Article  Google Scholar 

  85. L. I. Govor, E. A. Greshnikov, I. E. Zaitseva, et al., Brief Commun. Inst. Archaeol. 249, 348 (2017).

    Google Scholar 

  86. E. S. Kovalenko, K. M. Podurets, E. A. Greshnikov, et al., Crystallogr. Rep. 64 (5), 841 (2019).

    Article  Google Scholar 

  87. N. A. Makarov, E. A. Greshnikov, I. E. Zaitseva, et al., Brief Commun. Inst. Archaeol. 258, 25 (2020).

    Google Scholar 

  88. E. S. Kovalenko, M. M. Murashev, E. K. Stolyarova, et al., Crystallogr. Rep. 65 (6), 1073 (2020).

    Article  Google Scholar 

  89. I. A. Saprykina, S. E. Kichanov, D. P. Kozlenko, et al., Russ. Archaeol., No. 3, 36 (2018).

  90. V. P. Glazkov, E. S. Kovalenko, M. M. Murashev, et al., Crystallogr. Rep. 63 (4), 692 (2018).

    Article  Google Scholar 

  91. K. M. Podurets, D. V. Sokol’skii, R. R. Chistyakov, et al., Fiz. Tverd. Tela 33 (10), 2954 (1991).

    Google Scholar 

  92. K. M. Podurets, R. R. Chistyakov, and S. Sh. Shil’shtein, Zh. Tekh. Fiz. 67, 134 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Podurets.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podurets, K.M., Kichanov, S.E., Glazkov, V.P. et al. Modern Methods of Neutron Radiography and Tomography in Studies of the Internal Structure of Objects. Crystallogr. Rep. 66, 254–266 (2021). https://doi.org/10.1134/S1063774521020115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521020115

Navigation