Skip to main content
Log in

Small-Angle Neutron Scattering at the Pulsed Reactor IBR-2: Current Status and Prospects

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2022

This article has been updated

Abstract

Neutron diffraction studies on the small-angle neutron spectrometer YuMO (Joint Institute for Nuclear Research, Dubna), based on the IBR-2 pulsed reactor, have been reviewed. The main parameters of small-angle spectrometers, based on the time-of-flight technique, are considered. It is shown that the flux on sample is the key parameter of the spectrometers based on pulsed sources, which makes it possible (along with application of a multidetector system) to expand the dynamic range of scattering vector magnitudes. The history of the setting up of the first small-angle instrument based on pulsed sources is overviewed. The directions of development of small-angle spectrometers are shown. The results of YuMO studies in the fields of polymers, biology, materials science, and physical chemistry are briefly reviewed. The main strategies of development of small-angle neutron scattering on pulsed sources are considered. The possibilities of the small-angle instruments based on a synchrotron source and on a neutron pulsed source are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

REFERENCES

  1. M. C. Roco, R. S. Williams, and P. Alivisatos, Nanotechnology Research Directions (Kluwer Academic, 2002).

    Google Scholar 

  2. D. I. Svergun, E. V. Shtykova, V. V. Volkov, et al., Crystallogr. Rep. 56 (5), 725 (2011). https://doi.org/10.1134/S1063774511050221

    Article  ADS  Google Scholar 

  3. A. V. Vlasov, K. V. Kovalev, S.-H. Marx, et al., Sci. Rep. 9 (1), 1 (2019). https://doi.org/10.1038/s41598-019-55092-z

    Article  Google Scholar 

  4. O. I. Ivankov, E. V. Ermakova, T. N. Murugova, et al., Adv. Biomembr. Lipid Self-Assem. 31, 185 (2020). https://doi.org/10.1016/bs.abl.2020.02.002

    Article  Google Scholar 

  5. T. Murugova, O. Ivankov, E. Ermakova, et al., Gen. Physiol. Biophys. 39 (2), 135 (2020). https://doi.org/10.4149/gpb_2019054

    Article  Google Scholar 

  6. A. Zeleňáková, P. Hrubovčák, O. Kapusta, et al., Sci. Rep. 9 (1), 1 (2019). https://doi.org/10.1038/s41598-019-52417-w

    Article  Google Scholar 

  7. Y. V. Kulvelis, O. N. Primachenko, A. S. Odinokov, et al., Fullerenes, Nanotubes, Carbon Nanostr. 28 (2), 140 (2020). https://doi.org/10.1080/1536383X.2019.1680981

    Article  Google Scholar 

  8. A. Kuklin, D. Zabelskii, I. Gordeliy, et al., Sci. Rep. 10 (1), 1 (2020). https://doi.org/10.1038/s41598-020-62577-9

    Article  Google Scholar 

  9. M. A. Ostrovskii, Ross. Fiziol. Zh. im. I. M. Sechenova 106 (4), 401 (2020). https://doi.org/10.31857/S0869813920040056

    Article  Google Scholar 

  10. A. I. Kuklin, A. V. Rogachev, A. Yu. Cherniy, et al., Rom. J. Phys. 56 (1–2), 134 (2011). http://www.nipne.ro/rjp/2011_56_1-2/0134_0141.pdf

    Google Scholar 

  11. https://sas2018.anl.gov

  12. http://ecns2019.com

  13. R. P. Rambo and J. A. Tainer, Nature 496 (7446), 477 (2013). https://doi.org/10.1038/nature12070

    Article  ADS  Google Scholar 

  14. A. Kuklin, A. Islamov, M. Balasoiu, et al., J. Phys.: Conf. Ser. IOP Publ. 351 (1), 012001 (2012). https://doi.org/10.1088/1742-6596/351/1/012001

    Article  Google Scholar 

  15. N. Kučerka, M. Balasoiu, and A. I. Kuklin, Neutron News 27 (4), 14 (2016). https://doi.org/10.1080/10448632.2016.1233010

    Article  Google Scholar 

  16. D. I. Svergun and L. A. Feigin, X-Ray and Small-Angle Neutron Scattering (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  17. A. N. Ozerin, A. M. Muzafarov, V. I. Gordeliy, et al., Macromol. Symp. 195 (1), 171 (2003). https://doi.org/10.1002/masy.200390118

    Article  Google Scholar 

  18. A. I. Kuklin, A. V. Rogachev, D. V. Soloviov, et al., J. Phys.: Conf. Ser. IOP Publ. 848 (1), 012010 (2017). https://doi.org/10.1088/1742-6596/848/1/012010

    Article  Google Scholar 

  19. L. Almasy, A. I. Kuklin, M. Pozar, et al., Phys. Chem. Chem. Phys. 21 (18), 9317 (2019). https://doi.org/10.1039/C9CP01137D

    Article  Google Scholar 

  20. A. V. Shibaev, A. S. Ospennikov, A. I. Kuklin, et al., Colloids Surf. A 586, 124284 (2020). https://doi.org/10.1016/j.colsurfa.2019.124284

    Article  Google Scholar 

  21. A. L. Kwiatkowski, V. S. Molchanov, A. I. Kuklin, et al., J. Mol. Liq. 311, 113301 (2020). https://doi.org/10.1016/j.molliq.2020.113301

    Article  Google Scholar 

  22. H. Gibhardt, C. R. Haramagatti, A. Kh. Islamov, et al., Z. Phys. Chem. 229 (10–12), 1869 (2015). https://doi.org/10.1515/zpch-2015-0609

    Article  Google Scholar 

  23. T. W. Gräwert and D. I. Svergun, J. Mol. Biol. 432, 3078 (2020). https://doi.org/10.1016/j.jmb.2020.01.030

    Article  Google Scholar 

  24. A. G. Kikhney, C. R. Borges, D. S. Molodenskiy, et al., Protein Sci. 29 (1), 66 (2020). https://doi.org/10.1002/pro.3731

    Article  Google Scholar 

  25. A. Czech, A. Höppner, S. Kobus, et al., Sci. Rep. 9 (1), 1 (2019). https://doi.org/10.1038/s41598-018-36247-w

    Article  Google Scholar 

  26. L. Anghel, A. Rogachev, A. Kuklin, and R. Erhan, Eur. Biophys. J. 48 (3), 285 (2019). https://doi.org/10.1007/s00249-019-01360-9

    Article  Google Scholar 

  27. D. V. Lebedev, Y. A. Zabrodskaya, V. Pipich, et al., Biochem. Biophys. Res. Commun. 520 (1), 136 (2019). https://doi.org/10.1101/675223

    Article  Google Scholar 

  28. V. V. Skoi, M. I. Rulev, A. S. Kazantsev, et al., J. Bioenerg. Biomembr. 50 (6), 584 (2018). https://doi.org/10.1007/s10863-018-9775-7

    Article  Google Scholar 

  29. M. Golub, S. Combet, F. Wieland, et al., Biochim. Biophys. Acta Bioenerg. 1858 (4), 318 (2017). https://doi.org/10.1016/j.bbabio.2017.01.010

    Article  Google Scholar 

  30. I. V. Byelinska, H. M. Kuznietsova, N. V. Dziubenko, et al., Mater. Sci. Eng. C 93, 505 (2018). https://doi.org/10.1016/j.msec.2018.08.033

    Article  Google Scholar 

  31. T. N. Murugova, I. M. Solodovnikova, V. I. Yurkov, et al., Neutron News 22 (3), 11 (2011). https://doi.org/10.1080/10448632.2011.598800

    Article  Google Scholar 

  32. T. N. Murugova, V. I. Gordeliy, A. I. Kuklin, et al., Biophysics 51 (6), 882 (2006). https://doi.org/10.1134/S0006350906060054

    Article  Google Scholar 

  33. T. N. Murugova, V. I. Gordeliy, A. I. Kuklin, et al., Crystallogr. Rep. 52 (3), 521 (2007). https://doi.org/10.1134/S1063774507030339

    Article  ADS  Google Scholar 

  34. D. Uhríková, N. Kučerka, A. Lengyel, et al., J. Phys. Conf. Ser. IOP Publ. 351 (1), 012011 (2012). https://doi.org/10.1088/1742-6596/351/1/012011

    Article  Google Scholar 

  35. T. B. Feldman, O. I. Ivankov, A. I. Kuklin, et al., Biochim. Biophys. Acta, Biomembr. 1861 (10), 183000 (2019). https://doi.org/10.1016/j.bbamem.2019.05.022

    Article  Google Scholar 

  36. T. B. Feldman, A. I. Ivankov, T. N. Murugova, et al., Dokl. Biochem. Biophys. Biochim. Biophys. 465 (1), 420 (2015). https://doi.org/10.1134/S1607672915060186

    Article  Google Scholar 

  37. A. V. Krivandin, T. N. Murugova, A. I. Kuklin, et al., Biochemistry (Moscow). 75 (11), 1324 (2010). https://doi.org/10.1134/S0006297910110039

    Article  Google Scholar 

  38. D. Uhríková, J. Teixeira, L. Hubčík, et al., J. Phys. Conf. Ser. IOP Publ. 848 (1), 012007 (2017). https://doi.org/10.1088/1742-6596/848/1/012007

    Article  Google Scholar 

  39. L. S. Yaguzhinsky, I. M. Byvshev, S. V. Nesterov, et al., J. Bioenerg. Biomembr. 50 (6), 598 (2018). https://doi.org/10.1007/s10863-018-9775-7

    Article  Google Scholar 

  40. T. N. Murugova and P. Balgavý, Phys. Chem. Chem. Phys. 16 (34), 18211 (2014). https://doi.org/10.1039/C4CP01980F

    Article  Google Scholar 

  41. A. A. Nabiyev, A. Olejniczak, A. Pawlukojc, et al., Polym. Degrad. Stab. 171, 109042 (2020). https://doi.org/10.1016/j.polymdegradstab.2019.109042

    Article  Google Scholar 

  42. A. L. Kwiatkowski, V. S. Molchanov, H. Sharma, et al., Soft Matter 14 (23), 4792 (2018). https://doi.org/10.1039/C8SM00776D

    Article  ADS  Google Scholar 

  43. V. T. Lebedev, Y. V. Kulvelis, S. S. Ivanchev, et al., Phys. Scr. 95 (4), 044008 (2020). https://doi.org/10.1088/1402-4896/ab668e

    Article  ADS  Google Scholar 

  44. O. P. Artykulnyi, A. V. Shibaev, M. M. Avdeev, et al., J. Mol. Liq. 308, 113045 (2020). https://doi.org/10.1016/j.molliq.2020.113045

    Article  Google Scholar 

  45. R. Vladoiu, A. Mandes, V. Dinca, et al., Materials 13 (2), 399 (2020). https://doi.org/10.3390/ma13020399

    Article  ADS  Google Scholar 

  46. K. Rećko, J. Waliszewski, U. Klekotka, et al., Phase Transitions 91 (2), 128 (2018). https://doi.org/10.1080/01411594.2017.1409351

    Article  Google Scholar 

  47. K. Ludzik, S. Woloszczuk, W. Zając, et al., Int. J. Mol. Sci. 21 (16), 5828 (2020). https://doi.org/10.3390/ijms21165828

    Article  Google Scholar 

  48. P. A. Loiko, G. E. Rachkovskaya, N. A. Skoptsov, et al., J. Appl. Spectrosc. 84 (1), 194 (2017). https://doi.org/10.1007/s10812-017-0449-8

    Article  ADS  Google Scholar 

  49. M. Nyam-Osor, D. V. Soloviov, Yu. S. Kovalev, et al., J. Phys. Conf. Ser. IOP Publ. 351 (1), 012024 (2012). https://doi.org/10.1088/1742-6596/351/1/012024

    Article  Google Scholar 

  50. O. V. Tomchuk, M. V. Avdeev, A. E. Aleksenskii, et al., J. Phys. Chem. C 123 (29), 18028 (2019). https://doi.org/10.1021/acs.jpcc.9b03175

    Article  Google Scholar 

  51. O. A. Kyzyma, M. V. Avdeev, O. I. Bolshakova, et al., Appl. Surf. Sci. 483, 69 (2019). https://doi.org/10.1016/j.apsusc.2019.03.167

    Article  ADS  Google Scholar 

  52. O. Kyzyma, N. Bashmakova, Yu. Gorshkova, et al., J. Mol. Liq. 278, 452 (2019). https://doi.org/10.1016/j.molliq.2019.01.062

    Article  Google Scholar 

  53. L. Melnikova, V. I. Petrenko, M. V. Avdeev, et al., J. Magn. Magn. Mater. 377, 77 (2015). https://doi.org/10.1016/j.jmmm.2014.10.085

    Article  ADS  Google Scholar 

  54. L. Melníková, V. I. Petrenko, M. V. Avdeev, et al., Colloids Surf. B 123, 82 (2014). https://doi.org/10.1016/j.colsurfb.2014.08.032

    Article  Google Scholar 

  55. Y. V. Kulvelis, S. S. Ivanchev, O. N. Primachenko, et al., RSC Adv. 6 (110), 108864 (2016). https://doi.org/10.1039/C6RA23445C

    Article  ADS  Google Scholar 

  56. A. V. Nagornyi, Yu. Yu. Shlapa, M. V. Avdeev, et al., J. Mol. Liq. 312, 113430 (2020). https://doi.org/10.1016/j.molliq.2020.113430

    Article  Google Scholar 

  57. T. K. Zakharchenko, M. V. Avdeev, A. V. Sergeev, et al., Nanoscale 11 (14), 6838 (2019). https://doi.org/10.1039/C9NR00190E

    Article  Google Scholar 

  58. O. V. Tomchuk, V. Ryukhtin, O. Ivankov, et al., Fullerenes, Nanotubes, Carbon Nanostr. 28 (4), 272 (2020). https://doi.org/10.1080/1536383X.2019.169768658

    Article  Google Scholar 

  59. O. V. Tomchuk, M. V. Avdeev, O. I. Ivankov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13 (6), 1122 (2019). https://doi.org/10.1134/S1027451019060545

    Article  Google Scholar 

  60. M. V. Avdeev, M. S. Yerdauletov, O. I. Ivankov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13 (4), 614 (2019). https://doi.org/10.1134/S1027451019040037

    Article  Google Scholar 

  61. A. Borowik, Yu. Prylutskyy, L. Kawelski, et al., Colloids Surf. B 164, 134 (2018). https://doi.org/10.1016/j.colsurfb.2018.01.026

    Article  Google Scholar 

  62. M. V. Avdeev, O. V. Tomchuk, O. I. Ivankov, et al., Chem. Phys. Lett. 658, 58 (2016). https://doi.org/10.1016/j.cplett.2016.06.010

    Article  ADS  Google Scholar 

  63. M. Balasoiu and A. Kuklin, J. Phys. Conf. Ser. IOP Publ. 351 (1), 012012 (2012). https://doi.org/10.1088/1742-6596/351/1/012005

    Article  Google Scholar 

  64. V. Ya. Frenkel’, 50th Anniversary of the Discovery of the Neutron (Nauka, Moscow, 1983.) [in Russian].

    Google Scholar 

  65. B. I. Voronov et al., Preprint OIYaI No. R9-451 (Joint Institute of Nuclear Research, Dubna, 1976).

    Google Scholar 

  66. V. A. Vagov et al., Preprint OIYaI No. R83-898 (Joint Institute of Nuclear Research, Dubna, 1976).

    Google Scholar 

  67. Y. M. Ostanevich, Makromol. Chem. Macromol. Symp. 15 (1), 91 (1988).

  68. A. I. Kuklin, A. K. Islamov, and V. I. Gordeliy, Neutron News 16 (3), 16 (2005). https://doi.org/10.1080/10448630500454361

    Article  Google Scholar 

  69. A. I. Kuklin, A. Kh. Islamov, P. K. Utrobin, and Yu. S. Kovalev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 74 (2006). https://inis.iaea.org/search/search.aspx?orig_qRN:39021280

    Google Scholar 

  70. A. Jackson and K. Kanaki, ESS Construction Proposal: LoKI-A broad-band SANS Instrument (2013). https://doi.org/10.5281/zenodo.13302

  71. C. D. Dewhurst, I. Grillo, D. Honecker, et al., J. Appl. Crystallogr. 49 (1), 1 (2016). https://doi.org/10.1107/S1600576715021792

    Article  Google Scholar 

  72. A. Sokolova, J. Christoforidis, A. Eltobaji, et al., Neutron News 27 (2), 9 (2016). https://doi.org/10.1080/10448632.2016.1163980

    Article  Google Scholar 

  73. I. M. Byvshev, T. N. Murugova, A. I. Ivankov, et al., Biophysics 63 (4), 549 (2018). https://doi.org/10.1134/S0006350918040048

    Article  Google Scholar 

  74. A. V. Belushkin, D. P. Kozlenko, and A. V. Rogachev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5 (5), 828 (2011). https://doi.org/10.1134/S1027451011090047

    Article  Google Scholar 

  75. T. N. Murugova, A. V. Vlasov, O. I. Ivankov, et al., J. Optoelectron. Adv. Mater. 17 (9–10), 1397 (2015). WOS:000364600400027

  76. A. Mishin, A. Gusach, A. Luginina, et al., Expert Opin. Drug Discovery 14 (9), 933 (2019). https://doi.org/10.1080/17460441.2019.1626822

    Article  Google Scholar 

  77. A. Luginina, A. Gusach, E. Marin, et al., Sci. Adv. 5 (10), eaax2518 (2019). https://doi.org/10.1126/sciadv.aax2518

  78. L. C. Johansson, B. Stauch, J. D. McCorvy, et al., Nature 569 (7755), 289 (2019). https://doi.org/10.1038/s41586-019-1144-0

    Article  ADS  Google Scholar 

  79. B. Stauch, L. C. Johansson, J. D. McCorvy, et al., Nature 569 (7755), 284 (2019). https://doi.org/10.1038/s41586-019-1141-3

    Article  ADS  Google Scholar 

  80. H. S. Kim and F. Gabel, Acta Crystallogr. D 71 (1), 57 (2015). https://doi.org/10.1107/S1399004714013923

    Article  Google Scholar 

  81. A. Guinier and G. Fournet, Small-Angle Scattering of X-rays (Wiley, New York, 1955).

    MATH  Google Scholar 

  82. D. Franke, M. V. Petoukhov, P. V. Konarev, et al., J. Appl. Crystallogr. 50 (4), 1212 (2017). https://doi.org/10.1107/S1600576717007786

    Article  Google Scholar 

  83. V. V. Volkov and D. I. Svergun, J. Appl. Crystallogr. 36 (3), 860 (2003). https://doi.org/10.1107/S0021889803000268

    Article  Google Scholar 

  84. A. I. Kuklin, A. I. Ivankov, D. V. Soloviov, et al., J. Phys. Conf. Ser. IOP Publ. 994 (1), 012016 (2018). https://doi.org/10.1088/1742-6596/994/1/012016

    Article  Google Scholar 

  85. A. G. Soloviev, E. I. Litvinenko, G. A. Ososkov, et al., Nucl. Instrum. Methods Phys. Res. A 502 (2–3), 500 (2003). https://doi.org/10.1016/S0168-9002(03)00481-9

    Article  ADS  Google Scholar 

  86. A. G. Soloviev, T. M. Solovjeva, O. I. Ivankov, et al., J. Phys. Conf. Ser. IOP Publ. 848 (1), 012020 (2017). https://doi.org/10.1088/1742-6596/848/1/012020

    Article  Google Scholar 

  87. A. I. Kuklin, A. D. Rogov, Yu. E. Gorshkova, et al., Phys. Part. Nucl. Lett. 8 (2), 119 (2011). https://doi.org/10.1134/S1547477111020075

    Article  Google Scholar 

  88. N. I. Gorski, A. N. Ivanov, A. I. Kuklin, and L. S. Smirnov, Int. J. High Pressure Res. 14 (1–3), 215 (1995). https://doi.org/10.1080/08957959508200922

    Article  ADS  Google Scholar 

  89. N. Gorski, J. Kalus, A. I. Kuklin, and L. S. Smirnov, J. Appl. Crystallogr. 30 (5), 739 (1997). https://doi.org/10.1107/S0021889897002860

    Article  Google Scholar 

  90. C. R. Haramagatti, A. Islamov, H. Gibhardt, et al., Phys. Chem. Chem. Phys. 8 (8), 994 (2006). https://doi.org/10.1039/B513588E

    Article  Google Scholar 

  91. D. V. Solov’ev, A. I. Kuklin, P. K. Utrobin, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5 (1), 7 (2011). https://doi.org/10.1134/S1027451011010174

    Article  Google Scholar 

  92. D. Soloviov, Yu. Zabashta, L. Bulavin, et al., Macromol. Symp. 335 (1), 58 (2014). https://doi.org/10.1002/masy.201200122

    Article  Google Scholar 

  93. B. Grabcev, M. Balasoiu, D. Bica, and A. I. Kuklin, Magnetohydrodynamics 10, 156 (1994). https://www.researchgate.net/publication/233415036_ Determination_of_the_Structure_of_Magnetite_Particles_in_Ferrofluid_by_Small_Angle_Neutron_Scattering.

    Google Scholar 

  94. B. Grabcev, M. Balasoiu, A. Tirziu, et al., J. Magn. Magn. Mater. 201 (1–3), 140 (1999). https://doi.org/10.1016/S0304-8853(99)00095-5

    Article  ADS  Google Scholar 

  95. M. Rajnak, V. I. Petrenko, M. V. Avdeev, et al., Appl. Phys. Lett. 107 (7), 073108 (2015). https://doi.org/10.1063/1.4929342

    Article  ADS  Google Scholar 

  96. A. Vlasov, Y. Kovalev, Y. Ryzhykau, et al., FEBS J. 283, 218 (2016). https://doi.org/10.1111/febs.13808

    Article  Google Scholar 

  97. A. A. Gapchenko, A. V. Vlasov, Y. L. Ryzhykau, et al., J. Bioenerg. Biomembr. 50 (6), 540 (2018). https://doi.org/10.1007/s10863-018-9775-7

    Article  Google Scholar 

  98. A. Kuklin, A. N. Ozerin, A. Kh. Islamov, et al., J. Appl. Crystallogr. 36 (3), 679 (2003). https://doi.org/10.1107/S0021889803006186

    Article  Google Scholar 

  99. D. V. Zabelskii, A. V. Vlasov, Yu. L. Ryzhykau, et al., J. Phys. Conf. Ser. IOP Publ. 994 (1), 012017 (2018). https://doi.org/10.1088/1742-6596/994/1/012017

    Article  Google Scholar 

  100. A. I. Kuklin, A. V. Rogachev, D. V. Soloviov, et al., J. Bioenerg. Biomembr. 50 (6), 555 (2018). https://doi.org/10.1007/s10863-018-9775-7

    Article  Google Scholar 

  101. P. Pernot, A. Round, R. Barrett, et al., J. Synchrotron Radiat. 20 (4), 660 (2013). https://doi.org/10.1107/S0909049513010431

    Article  Google Scholar 

  102. A. I. Kuklin, A. V. Rogachev, D. V. Soloviov, et al., J. Phys. Conf. Ser. IOP Publ. 848 (1), 012010 (2017). https://doi.org/10.1088/1742-6596/848/1/012010

    Article  Google Scholar 

  103. J. E. Martin and A. J. Hurd, J. Appl. Crystallogr. 20 (2), 61 (1987). https://doi.org/10.1107/S0021889887087107

    Article  Google Scholar 

  104. J. Teixeira, J. Appl. Crystallogr. 21 (6), 781 (1988). https://doi.org/10.1107/S0021889888000263

    Article  Google Scholar 

  105. P. W. Schmidt, J. Appl. Crystallogr. 24 (5), 414 (1991). https://doi.org/10.1107/S0021889891003400

    Article  Google Scholar 

  106. A. Y. Cherny, E. M. Anitas, V. A. Osipov, and A. I. Kuklin, Phys. Chem. Chem. Phys. 21 (24), 12748 (2019). https://doi.org/10.1039/C9CP00783K

    Article  Google Scholar 

  107. A. Y. Cherny, E. Anitas, A. Kuklin, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4 (6), 903 (2010). https://doi.org/10.1134/S1027451010060054

    Article  Google Scholar 

  108. A. Y. Cherny, E. Anitas, V. Osipov, and A. I. Kuklin, Phys. Rev. E 84 (3), 036203 (2011). https://doi.org/10.1103/PhysRevE.84.036203

    Article  ADS  Google Scholar 

  109. A. Y. Cherny, E. Anitas, V. Osipov, and A. Kuklin, J. Appl. Crystallogr. 47 (1), 198 (2014). https://doi.org/10.1107/S1600576713029956

    Article  Google Scholar 

  110. A. Y. Cherny, E. Anitas, V. Osipov, and A. Kuklin, Rom. J. Physiol. 60, V. 658 (2015). https://www.nipne.ro/rjp/2015_60_5-6/RomJPhys.60.p658.pdf.

  111. A. Y. Cherny, E. Anitas, V. Osipov, and A. Kuklin, J. Appl. Crystallogr. 50 (3), 919 (2017). https://doi.org/10.1107/S1600576717005696

    Article  Google Scholar 

  112. A. Y. Cherny, E. Anitas, V. Osipov, and A. Kuklin, Phys. Chem. Chem. Phys. 19 (3), 2261 (2017). https://doi.org/10.1039/C6CP07496K

    Article  Google Scholar 

  113. D. V. Lebedev, M. Filatov, A. Kuklin, et al., FEBS Lett. 579 (6), 1465 (2005). https://doi.org/10.1016/j.febslet.2005.01.052

    Article  Google Scholar 

  114. D. V. Lebedev, M. Filatov, A. Kuklin, et al., Crystallogr. Rep. 53 (1), 110 (2008). https://doi.org/10.1134/S1063774508010136

    Article  ADS  Google Scholar 

  115. G. N. Fedotov, Y. D. Tret’yakov, E. Pakhomov, et al., Dokl. Chem. 409 (1), 117 (2006). https://doi.org/10.1134/S0012500806070044

    Article  Google Scholar 

  116. G. N. Fedotov, Y. D. Tret’yakov, E. Pakhomov, et al., Dokl. Akad. Nauk. 407 (6), 782 (2006).

    Google Scholar 

  117. G. N. Fedotov, Y. D. Tret’yakov, E. Pakhomov, et al., Dokl. Akad. Nauk. 409 (2), 199 (2006).

    Google Scholar 

  118. G. N. Fedotov, Y. D. Tret’yakov, E. Pakhomov, et al., Dokl. Chem. 408 (1), 73 (2006). https://doi.org/10.1134/S0012500806050053

    Article  Google Scholar 

  119. V. T. Lebedev, Y. V. Kulvelis, S. S. Ivanchev, et al., Phys. Scr. 95 (4), 044008 (2020).

    Article  ADS  Google Scholar 

  120. R. Efremov, G. Shiryaeva, G. Bueldt, et al., J. Cryst. Growth 275 (1–2), e1453 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.235

    Article  Google Scholar 

  121. A. S. Andreeva, O. E. Philippova, A. R. Khokhlov, et al., Langmuir 21 (4), 1216 (2005). https://doi.org/10.1021/la0478999

    Article  Google Scholar 

  122. M. Hereć, A. Islamov, A. Kuklin, et al., Chem. Phys. Lipids 147 (2), 78 (2007). https://doi.org/10.1016/j.chemphyslip.2007.03.007

    Article  Google Scholar 

  123. V. Y. Bairamukov, A. Kuklin, D. Orlova, and V. Lebedev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13 (5), 793 (2019). https://doi.org/10.1134/S1027451019050045

    Article  Google Scholar 

  124. L. A. Bulavin, O. I. Ivankov, A. Kh. Islamov, and A. I. Kuklin, Ukr. J. Phys. 55, 1 (2010).

    Google Scholar 

  125. A. Islamov, C. Haramagatti, H. Gibhardt, et al., Physica B 385, 791 (2006). https://doi.org/10.1016/j.physb.2006.06.085

    Article  ADS  Google Scholar 

  126. A. I. Kuklin, D. V. Soloviev, A. V. Rogachev, et al., J. Phys. Conf. Ser. IOP Publ. 291 (1), 012013 (2011). https://doi.org/10.1088/1742-6596/291/1/012013

    Article  Google Scholar 

  127. A. I. Kuklin, G. M. Ignat’eva, L. A. Ozerina, et al., Polymer Sci. A 44 (12), 1 (2002).

    Google Scholar 

  128. A. N. Ozerin, A. M. Muzafarov, A. I. Kuklin, et al., Dokl. Chem. 395 (4–6), 59 (2004). https://doi.org/10.1023/B:DOCH.0000025222.61985.b1

    Article  Google Scholar 

  129. A. N. Ozerin, D. Svergun, V. Volkov, et al., J. Appl. Crystallogr. 38 (6), 996 (2005). https://doi.org/10.1107/S0021889805032115

    Article  Google Scholar 

  130. A. V. Rogachev, A. Y. Cherny, A. Ozerin, et al., Crystallogr. Rep. 52 (3), 500 (2007). https://doi.org/10.1134/S1063774507030303

    Article  ADS  Google Scholar 

  131. A. V. Rogachev, A. Kuklin, A. Y. Cherny, et al., Phys. Solid State 52 (5), 1045 (2010). https://doi.org/10.1134/S1063783410050343

    Article  ADS  Google Scholar 

  132. A. V. Rogachev, A. Y. Cherny, A. Ozerin, et al., J. Phys. Conf. Ser. IOP Publ. 129 (1), 012041 (2008). https://doi.org/10.1088/1742-6596/129/1/012041

    Article  Google Scholar 

  133. L. Bulavin, N. Kutsevol, V. Chumachenko, et al., Nanoscale Res. Lett. 11 (1), 35 (2016). https://doi.org/10.1186/s11671-016-1230-2

    Article  ADS  Google Scholar 

  134. A. I. Kuklin, Yu. S. Kovalev, A. I. Ivankov, et al., Frank Lab. of Neutron Physics, Report No. JINR-R14-2013-46 (2013).

  135. Yu. M. Ostanevich and I. N. Serdyuk, Usp. Fiz. Nauk 137 (5), 85 (1982). https://doi.org/10.3367/UFNr.0137.198205d.0085

    Article  Google Scholar 

  136. A. I. Kuklin, S. A. Kutuzov, A. Gabriel, et al., Book of Abstracts of the 4th European Conference on Neutron Scattering, Lund, Sweden, June 25–29, 2007, p. 25.

  137. A. I. Kuklin, S. A. Kutuzov, A. Gabriel, et al., Ann. Rep. FLNP 129 (2007).

Download references

ACKNOWLEDGMENTS

We are grateful to A.S. Kirilov, T.B. Petukhova, S.M. Murashkevich, S.A. Kutuzov, A.P. Sirotin, A.A. Bogdzel’, and all members of the small-angle scattering team for their help in practical realization of concepts and works related to the spectrometer.

Funding

This study was supported in part by the Russian Science Foundation, project no. 19-72-20186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kuklin.

Additional information

Translated by Yu. Sin’kov

The original online version of this article was revised: Surname of the ninth author should read Ryzhykau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuklin, A.I., Ivankov, O.I., Rogachev, A.V. et al. Small-Angle Neutron Scattering at the Pulsed Reactor IBR-2: Current Status and Prospects. Crystallogr. Rep. 66, 231–241 (2021). https://doi.org/10.1134/S1063774521020085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521020085

Navigation