Skip to main content
Log in

A modified smoothed particle hydrodynamics for modelling fluid-fracture interaction at mesoscale

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This study presents a modified smoothed particle hydrodynamics (SPH) for modelling liquid-fracture interaction at mesoscale. In this approach, an interparticle force that can provide repulsive force in the short-range and attractive force in the long-range is introduced to model the liquid–liquid and liquid–solid interactions. This interparticle force prevents the SPH particles from clustering and having high compressibility when under high pressure. The formation of a droplet, different contact angles and realistic compressibility of liquid are achieved to demonstrate the capability of the proposed SPH based approach. Moreover, the Drucker–Prager model and the Grady–Kipp damage model are implemented in SPH to describe the solid failure. The results show that the mixed-mode can reproduce the fracture patterns of available Brazilian disc tests on rock-like 3D printed material. Finally, a process of hydraulic fracturing is simulated at mesoscale. The results demonstrate that the proposed SPH framework has potential in modelling liquid-fracture interaction with the consideration of interfacial effects at mesoscale and solid fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

source particles near the surface, density difference would occur

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Xu Y, Chen X, Zhao W, Chen P (2020) Effect of water intrusion on the characteristics of surface morphology and pore fracture spaces in argillaceous meagre coal. J Nat Gas Sci Eng 81:103404. https://doi.org/10.1016/j.jngse.2020.103404

    Article  Google Scholar 

  2. Muñoz-Ibáñez A, Falcon-Suarez IH, Marín-Moreno H et al (2020) Transport properties of saline CO2 storage reservoirs with unconnected fractures from brine-CO2 flow-through tests. J Pet Sci Eng 184:106551. https://doi.org/10.1016/j.petrol.2019.106551

    Article  Google Scholar 

  3. Wei Y, Maroto-Valer M, Steven MD (2011) Environmental consequences of potential leaks of CO2in soil. Energy Procedia 4:3224–3230. https://doi.org/10.1016/j.egypro.2011.02.239

    Article  Google Scholar 

  4. Dahi Taleghani A, Gonzalez-Chavez M, Yu H, Asala H (2018) Numerical simulation of hydraulic fracture propagation in naturally fractured formations using the cohesive zone model. J Pet Sci Eng 165:42–57. https://doi.org/10.1016/j.petrol.2018.01.063

    Article  Google Scholar 

  5. Verma R, Icardi M, Prodanović M (2018) Effect of wettability on two-phase quasi-static displacement: validation of two pore scale modeling approaches. J Contam Hydrol 212:115–133. https://doi.org/10.1016/j.jconhyd.2018.01.002

    Article  Google Scholar 

  6. Arshadi M, Khishvand M, Aghaei A et al (2018) Pore-scale experimental investigation of two-phase flow through fractured porous media. Water Resour Res 54:3602–3631. https://doi.org/10.1029/2018WR022540

    Article  Google Scholar 

  7. Maes J, Geiger S (2018) Direct pore-scale reactive transport modelling of dynamic wettability changes induced by surface complexation. Adv Water Resour 111:6–19. https://doi.org/10.1016/j.advwatres.2017.10.032

    Article  Google Scholar 

  8. Kojic M, Filipovic N, Tsuda A (2008) A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method. Comput Methods Appl Mech Eng 197:821–833. https://doi.org/10.1016/j.cma.2007.09.011

    Article  MathSciNet  MATH  Google Scholar 

  9. Papavassiliou DV, Pham NH, Kadri OE, Voronov RS (2018) Lattice Boltzmann methods for bioengineering applications. In: Geraghty F (ed) Numerical methods and advanced simulation in biomechanics and biological processes. Elsevier, pp 415–429

    Chapter  Google Scholar 

  10. Bin WZ, Chen R, Wang H et al (2016) An overview of smoothed particle hydrodynamics for simulating multiphase flow. Appl Math Model 40:9625–9655. https://doi.org/10.1016/j.apm.2016.06.030

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu MB, Liu GR, Zhou LW, Chang JZ (2015) Dissipative particle dynamics (DPD): an overview and recent developments. Arch Comput Methods Eng 22:529–556. https://doi.org/10.1007/s11831-014-9124-x

    Article  MathSciNet  MATH  Google Scholar 

  12. Jahanshaloo L, Sidik NAC, Fazeli A, Mahmoud MP (2016) An overview of boundary implementation in lattice Boltzmann method for computational heat and mass transfer. Int Commun Heat Mass Transf 78:1–12. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.014

    Article  Google Scholar 

  13. Ye T, Li Y (2018) A comparative review of smoothed particle hydrodynamics, dissipative particle dynamics and smoothed dissipative particle dynamics. Int J Comput Methods 15:1850083. https://doi.org/10.1142/S0219876218500834

    Article  MathSciNet  MATH  Google Scholar 

  14. Pramanik R, Douillet-Grellier T, Pan K, et al (2016) An SPH approach to the simulation of hydraulic fracture propagation in naturally fractured rock medium. In: 50th US rock mechanics/geomechanics symposium 2016, pp 2914–2923

  15. Al-Saad M, Suarez CA, Obeidat A et al (2020) Application of smooth particle hydrodynamics method for modelling blood flow with thrombus formation. Comput Model Eng Sci 122:831–862. https://doi.org/10.32604/cmes.2020.08527

    Article  Google Scholar 

  16. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209. https://doi.org/10.1016/S0022-5096(99)00029-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Tu Q, Li S (2017) An updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluids. J Comput Phys 348:493–513. https://doi.org/10.1016/j.jcp.2017.07.031

    Article  MathSciNet  MATH  Google Scholar 

  18. Yan J, Li S, Zhang A-M et al (2019) Updated Lagrangian Particle Hydrodynamics (ULPH) modeling and simulation of multiphase flows. J Comput Phys 393:406–437. https://doi.org/10.1016/j.jcp.2019.05.017

    Article  MathSciNet  MATH  Google Scholar 

  19. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123:421–434. https://doi.org/10.13182/NSE96-A24205

    Article  Google Scholar 

  20. Ren H, Zhuang X, Rabczuk T (2019) A dual-support smoothed particle hydrodynamics for weakly compressible fluid inspired by the dual-horizon peridynamics. Comput Model Eng Sci 121:353–383. https://doi.org/10.32604/cmes.2019.05146

    Article  Google Scholar 

  21. Khayyer A, Gotoh H (2013) Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios. J Comput Phys 242:211–233. https://doi.org/10.1016/j.jcp.2013.02.002

    Article  MathSciNet  MATH  Google Scholar 

  22. Libersky LD, Petschek AG, Carney TC et al (1993) High strain Lagrangian hydrodynamics. J Comput Phys 109:67–75

    Article  Google Scholar 

  23. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190:6641–6662. https://doi.org/10.1016/S0045-7825(01)00254-7

    Article  MATH  Google Scholar 

  24. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Methods Geomech 32:1537–1570. https://doi.org/10.1002/nag.688

    Article  MATH  Google Scholar 

  25. Fan H, Li S (2017) A Peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads. Comput Methods Appl Mech Eng 318:349–381. https://doi.org/10.1016/j.cma.2017.01.026

    Article  MathSciNet  MATH  Google Scholar 

  26. Fan H, Li S (2017) Parallel peridynamics–SPH simulation of explosion induced soil fragmentation by using OpenMP. Comput Part Mech 4:199–211. https://doi.org/10.1007/s40571-016-0116-5

    Article  Google Scholar 

  27. Deb D, Pramanik R (2013) Failure process of brittle rock using smoothed particle hydrodynamics. Am Soc Civ Eng 139:1551–1565. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000592

    Article  Google Scholar 

  28. Douillet-Grellier T, Jones BD, Pramanik R et al (2016) Mixed-mode fracture modeling with smoothed particle hydrodynamics. Comput Geotech 79:73–85. https://doi.org/10.1016/j.compgeo.2016.06.002

    Article  Google Scholar 

  29. Ma GW, Wang XJ, Ren F (2011) Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method. Int J Rock Mech Min Sci 48:353–363. https://doi.org/10.1016/j.ijrmms.2011.02.001

    Article  Google Scholar 

  30. Wang Y, Bui HH, Nguyen GD, Ranjith PGG (2019) A new SPH-based continuum framework with an embedded fracture process zone for modelling rock fracture. Int J Solids Struct 159:40–57. https://doi.org/10.1016/j.ijsolstr.2018.09.019

    Article  Google Scholar 

  31. Tran HT, Wang Y, Nguyen GD et al (2019) Modelling 3D desiccation cracking in clayey soils using a size-dependent SPH computational approach. Comput Geotech 116:103209. https://doi.org/10.1016/j.compgeo.2019.103209

    Article  Google Scholar 

  32. Xiao Y, Wu H, Ping X (2020) On the simulation of fragmentation during the process of ceramic tile impacted by blunt projectile with SPH method in LS-DYNA. Comput Model Eng Sci 122:923–954. https://doi.org/10.32604/cmes.2020.07686

    Article  Google Scholar 

  33. Yang X, Li Y, Nie A et al (2019) Numerical study on rock breaking mechanism of supercritical CO2 jet based on smoothed particle hydrodynamics. Mol Cell Biomech. https://doi.org/10.32604/cmes.2020.08538

    Article  Google Scholar 

  34. Azman A, Ng FC, Zawawi MH et al (2020) Effect of Barrier height on the design of stepped spillway using smoothed particle hydrodynamics and particle image velocimetry. KSCE J Civ Eng 24:451–470. https://doi.org/10.1007/s12205-020-1605-x

    Article  Google Scholar 

  35. Breinlinger T, Polfer P, Hashibon A, Kraft T (2013) Surface tension and wetting effects with smoothed particle hydrodynamics. J Comput Phys 243:14–27. https://doi.org/10.1016/j.jcp.2013.02.038

    Article  MATH  Google Scholar 

  36. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354. https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  MathSciNet  MATH  Google Scholar 

  37. Akinci N, Akinci G, Teschner M (2013) Versatile surface tension and adhesion for SPH fluids. ACM Trans Graph 32:1–8. https://doi.org/10.1145/2508363.2508395

    Article  Google Scholar 

  38. Bandara UC, Tartakovsky AM, Oostrom M et al (2013) Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media. Adv Water Resour 62:356–369. https://doi.org/10.1016/j.advwatres.2013.09.014

    Article  Google Scholar 

  39. Adami S, Hu XY, Adams NA (2013) A transport-velocity formulation for smoothed particle hydrodynamics. J Comput Phys 241:292–307. https://doi.org/10.1016/j.jcp.2013.01.043

    Article  MathSciNet  MATH  Google Scholar 

  40. Tartakovsky AM, Panchenko A (2016) Pairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamics. J Comput Phys 305:1119–1146. https://doi.org/10.1016/j.jcp.2015.08.037

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang A, Sun P, Ming F (2015) An SPH modeling of bubble rising and coalescing in three dimensions. Comput Methods Appl Mech Eng 294:189–209. https://doi.org/10.1016/j.cma.2015.05.014

    Article  MathSciNet  MATH  Google Scholar 

  42. Gershenzon NI, Ritzi RW, Dominic DF et al (2017) Capillary trapping of CO2 in heterogeneous reservoirs during the injection period. Int J Greenh Gas Control 59:13–23. https://doi.org/10.1016/j.ijggc.2017.02.002

    Article  Google Scholar 

  43. Kordilla J, Tartakovsky AM, Geyer T (2013) A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces. Adv Water Resour 59:1–14. https://doi.org/10.1016/j.advwatres.2013.04.009

    Article  Google Scholar 

  44. Guo B, Liu X, Tan X (2017) Hydraulic fracturing. In: Hammon K (ed) Petroleum production engineering. Elsevier, pp 389–501

    Chapter  Google Scholar 

  45. Tang M, Lu S, Zhan H et al (2018) The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media. Adv Water Resour 113:272–284. https://doi.org/10.1016/j.advwatres.2018.01.015

    Article  Google Scholar 

  46. Anbari A, Chien H-T, Datta SS et al (2018) Microfluidic model porous media: fabrication and applications. Small 14:1703575. https://doi.org/10.1002/smll.201703575

    Article  Google Scholar 

  47. Li L, Shen L, Nguyen GDGD et al (2018) A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. Comput Mech 62:1071–1085. https://doi.org/10.1007/s00466-018-1551-3

    Article  MathSciNet  MATH  Google Scholar 

  48. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406. https://doi.org/10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  49. Ihmsen M, Cornelis J, Solenthaler B et al (2014) Implicit incompressible SPH. IEEE Trans Vis Comput Graph 20:426–435. https://doi.org/10.1109/TVCG.2013.105

    Article  Google Scholar 

  50. Lee ES, Moulinec C, Xu R et al (2008) Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J Comput Phys 227:8417–8436. https://doi.org/10.1016/j.jcp.2008.06.005

    Article  MathSciNet  MATH  Google Scholar 

  51. Huang P, Shen L, Gan Y et al (2019) Atomistic study of dynamic contact angles in CO2–water–silica system. Langmuir 35:5324–5332. https://doi.org/10.1021/acs.langmuir.9b00076

    Article  Google Scholar 

  52. Bao Y, Li L, Shen L et al (2019) Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis. Acta Mech Sin Xuebao 35:472–485. https://doi.org/10.1007/s10409-018-00837-8

    Article  MathSciNet  Google Scholar 

  53. Sharafisafa M, Shen L, Zheng Y, Xiao J (2019) The effect of flaw filling material on the compressive behaviour of 3D printed rock-like discs. Int J Rock Mech Min Sci 117:105–117. https://doi.org/10.1016/j.ijrmms.2019.03.031

    Article  Google Scholar 

  54. Monaghan JJ (1992) Smoothed particle hydrodynamics. Rep Prog Phys 68:543–574. https://doi.org/10.1088/0034-4885/68/8/R01

    Article  MathSciNet  Google Scholar 

  55. Rezavand M, Taeibi-Rahni M, Rauch W (2018) An ISPH scheme for numerical simulation of multiphase flows with complex interfaces and high density ratios. Comput Math with Appl 75:2658–2677. https://doi.org/10.1016/j.camwa.2017.12.034

    Article  MathSciNet  MATH  Google Scholar 

  56. Marrone S, Antuono M, Colagrossi A et al (2011) δ-SPH model for simulating violent impact flows. Comput Methods Appl Mech Eng 200:1526–1542. https://doi.org/10.1016/j.cma.2010.12.016

    Article  MathSciNet  MATH  Google Scholar 

  57. Gomez-Gesteira M, Rogers BD, Crespo AJC et al (2012) SPHysics—development of a free-surface fluid solver—part 1: theory and formulations. Comput Geosci 48:289–299. https://doi.org/10.1016/j.cageo.2012.02.029

    Article  Google Scholar 

  58. Monaghan JJ, Kajtar JB (2009) SPH particle boundary forces for arbitrary boundaries. Comput Phys Commun 180:1811–1820. https://doi.org/10.1016/j.cpc.2009.05.008

    Article  MathSciNet  MATH  Google Scholar 

  59. Peng S, Zhang J (2007) Rock strength experiments and failure criteria. In: Engineering geology for underground rocks. Springer, Berlin, pp 75–100. https://doi.org/10.1007/978-3-540-73295-2

  60. Grady DE, Kipp ME (1980) Continuum modelling of explosive fracture in oil shale. Int J Rock Mech Min Sci 17:147–157. https://doi.org/10.1016/0148-9062(80)91361-3

    Article  Google Scholar 

  61. Das R, Cleary PW (2010) Effect of rock shapes on brittle fracture using Smoothed Particle Hydrodynamics. Theor Appl Fract Mech 53:47–60. https://doi.org/10.1016/j.tafmec.2009.12.004

    Article  Google Scholar 

  62. Sabahi H, Nikseresht A (2016) Comparison of ISPH and WCSPH methods to solve fluid-structure interaction problems. Sci Iran 23:2595–2605. https://doi.org/10.24200/sci.2016.3969

    Article  Google Scholar 

  63. Vargaftik NB, Volkov BN, Voljak LD (1983) International tables of the surface tension of water. J Phys Chem Ref Data 12:817–820. https://doi.org/10.1063/1.555688

    Article  Google Scholar 

  64. Adami S, Hu XY, Adams NA (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229:5011–5021. https://doi.org/10.1016/j.jcp.2010.03.022

    Article  MATH  Google Scholar 

  65. Abdelaziz KM, Combe EC, Hodges JS (2005) The wetting of surface-treated silicone impression materials by gypsum mixes containing disinfectants and modifiers. J Prosthodont 14:104–109. https://doi.org/10.1111/j.1532-849X.2005.00019.x

    Article  Google Scholar 

  66. Speight JG (2020) The properties of water. In: Deans M (ed) Natural water remediation. Elsevier, pp 53–89

    Chapter  Google Scholar 

  67. Sharafisafa M, Shen L, Xu Q (2018) Characterisation of mechanical behaviour of 3D printed rock-like material with digital image correlation. Int J Rock Mech Min Sci 112:122–138. https://doi.org/10.1016/j.ijrmms.2018.10.012

    Article  Google Scholar 

  68. Melosh HJ, Ryan EV, Asphaug E (1992) Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts. J Geophys Res 97:14735. https://doi.org/10.1029/92JE01632

    Article  Google Scholar 

  69. Shang X, Ding Y, Yang L et al (2016) Investigating the effect of interlayer geo-stress difference on hydraulic fracture propagation: Physical modeling and numerical simulations. Open Pet Eng J 9:195–206. https://doi.org/10.2174/1874834101609160195

    Article  Google Scholar 

Download references

Funding

This research was supported in part by the Australian Research Council through Discovery Projects (DP190102954 and DP200101919), and the Office of Global Engagement at the University of Sydney through the USYD–SJTU Research Project Grants. This research was undertaken and supported with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government, and the University of Sydney HPC service at The University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luming Shen.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organisations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Shen, L. A modified smoothed particle hydrodynamics for modelling fluid-fracture interaction at mesoscale. Comp. Part. Mech. 9, 277–297 (2022). https://doi.org/10.1007/s40571-021-00409-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00409-x

Keywords

Navigation