Skip to main content
Log in

Simulation of Ignition and Combustion of a Homogeneous Methane–Air Mixture under Local Thermal and Photochemical Impacts

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Ignition and combustion of a homogeneous stoichiometric methane–air mixture under simultaneous local thermal and photochemical impacts, resulting in the formation of either O\(_{2}(a^{1}\Delta _{g})\) molecules or O atoms, are numerically simulated. A two-dimensional unsteady multicomponent approach with the use of the known detailed kinetic mechanism of methane oxidation, which takes into account reactions with participation of electronically excited oxygen molecules O\(_{2}(a^{1}\Delta_{g})\) and O\(_{2}(b^{1}\Sigma _{g}^{ + })\), is applied. It is shown that an additional photochemical impact ensures ignition of the mixture in situations where the thermal impact alone is insufficient. Moreover, for identical energy inputs, a higher burning rate at the initial stage is observed in the case of generation of oxygen atoms. This method of the photochemical impact seems to be more effective from the viewpoint of combustion initiation. The computed results on propagation of turbulent combustion are in reasonable agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. S. Liu, N. Zhao, J. Zhang, J. Yang, Z. Li, H. Zheng, “Experimental and Numerical Investigations of Plasma Ignition Characteristics in Gas Turbine Combustors," Energies 12 (8), 1511–1527 (2019); DOI: 10.3390/en12081511.

  2. S. Huang, Z. Zhang, H. Song, Y. Wu, Y. Li, “A Novel Way to Enhance the Spark Plasma-Assisted Ignition for an Aero-Engine under Low Pressure," Appl. Sci. 8 (9), 1533 –1544 (2018); DOI: 10.3390/app8091533.

  3. Y.-H. Liao, M.-C. Sun, R.-Y. Lai, “Application of Plasma Discharges to the Ignition of a Jet Diffusion Flame," in Proc. of the ASME 2017 Fluids Engineering Division Summer Meeting. FEDSM2017-69554 (2017); DOI: 10.1115/FEDSM2017-69554.

  4. Y. Qiao, R. Mao, Y. Lin, “Large Eddy Simulation of the Ignition Performance in a Lean Burn Combustor," in Proc. of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. GT2015-43872 (2015); DOI: 10.1115/ GT2015-43872.

  5. E. Mastorakos, “Forced Ignition of Turbulent Spray Flames," Proc. Combust. Inst. 36, 2367–2383 (2017).

  6. M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, C. Bérat, “LES of an Ignition Sequence in a Gas Turbine Engine," Combust. Flame154 (1-2), 2–22 (2008); DOI: 10.1016/j.combustflame.2008.02.006.

  7. P. Moin, S. V. Apte, “Large-Eddy Simulation of Realistic Gas Turbine Combustors," AIAA J. 44, 698–708 (2006).

  8. N. Peters, “Investigation of the Multi-Physics of Laser-Induced Ignition of Transportation Fuels," Ph.D. Thesis, Dissertations-ALL, 689 (Syracuse Univ., 2017); https://surface.syr.edu/etd/689.

  9. A. M. Starik, V. E. Kozlov, N. S. Titova, “Numerical Study of the Influence of the Photochemical Activation of Oxygen Molecules on Homogeneous Charge Compression Ignition Performance," Energy Fuels 31 (8), 8608–8618 (2017); DOI: 10.1021/acs.energyfuels.7b00305.

  10. V. D. Kobtsev, S. A. Kostritsa, A. V. Pelevkin, V. V. Smirnov, A. M. Starik, N. S. Titova, S. A. Torokhov, K. A. Vereshchagin, S. Y. Volkov, “Ignition and Early Stage Combustion of H2–O2 Mixture upon the Photodissociation of O2 Molecules by UV Laser Radiation: Experimental and Numerical Study," Combust. Flame 200, 32–43 (2019); DOI: 10.1016/j.combustflame.2018.10.038.

  11. V. D. Kobtsev, S. A. Kostritsa, V. V. Smirnov, N. S. Titova, S. A. Torokhov, “Flow Reactor Experimental Study of H2/O2 and H2/air Mixtures Ignition Assisted by the Electrical Discharge," Combust. Sci. Technol.192 (4), 744–759 (2020); DOI: 10.1080/00102202.2019.1593970.

  12. V. D. Kobtsev, S. A. Kostritsa, V. V. Smirnov, N. S. Titova, S. A. Torokhov, “Ignition Delay Reduction in the Syngas–O2Mixture due to Excitation of O2 Molecules to the \(a^{1}\Delta _{g}\) State," in Nonequilibrium Processes, Vol. 2:Fundamentals of Combustion, Ed. by S. M. Frolov and A. I. Lanshin (Torus Press, Moscow, 2019).

  13. V. D. Kobtsev, S. A. Kostritsa, V. V. Smirnov, et al., “Experimental Study of Air and Methane Ignition in a Flow Reactor under the Impact of an Electric Discharge," inFundamental and Applied Problems of Gas Dynamics and Physical Chemistry in Aviation Motor Building, Ed. by A. I. Lanshin (CIAM, Moscow, 2020), pp. 205–211.

  14. A. T. Thattai, “A Validation Study for Turbulent Premixed Flame Propagation in Closed Vessels: Master Thes.," Delft Univ. of Technology, MEAH Number 254. (2010).

  15. J. Liu, K. Chen, X. Zhang, J. Wang, J. Yan, D. Yoshiro, “Numerical Simulation on the Laser Induced Oxygen Spark under Different Ambient Conditions," Energy Procedia 75, 2409–2414 (2015). [The 7th Int. Conf. on Appl. Energy (ICAE2015).]

  16. ANSYS Fluent Flow Modeling Simulation Software, Version 12: User’s Guide (ANSYS, Canonsburg, 2009).

  17. D. Bradley, M. Z. Haq, R. A. Hicks, T. Kitagawa, M. Lawes, C. G. W. Sheppard, R. Woolley, “Turbulent Burning Velocity, Burned Gas Distribution, and Associated Flame Surface Definition," Combust. Flame 133 (4), 415–430 (2003); DOI: 10.1016/s0010-2180 (03)00039-7.

  18. N. Peters, Combustion Theory (Copyright © 2010 by N. Peters) in: CEFRC Summer School, RWTH Aachen Univ., Princeton, June 27 to July 3, 2010; https:// cefrc.princeton.edu/combustion-summer-school/archived-programs/2010-summer-school.

  19. A. M. Starik, V. E. Kozlov, N. S. Titova, “On the Influence of Singlet Oxygen Molecules on Characteristics of HCCI Combustion: A Numerical Study," Combust. Theory Modell. 17 (4), 579–609 (2013); DOI: 10.1080/13647830.2013.783238.

  20. A. M. Starik, V. E. Kozlov, N. S. Titova, “Modeling Study of the Possibility of HCCI Combustion Improvement Via Photochemical Activation of Oxygen Molecules," Energy Fuels 28(3), 2170–2178 (2014); DOI: 10.1021/ef402116g.

  21. V. E. Kozlov, I. V. Chechet, S. G. Matveev, N. S. Titova, A. M. Starik, “Modeling Study of Combustion and Pollutant Formation in HCCI Engine Operating on Hydrogen Rich Fuel Blends," Int. J. Hydrogen Energy 41 (5), 3689–3700 (2016).

  22. V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, D. N. Kozlov, A. M. Starik, N. S. Titova, “On the Influence of Electronically Excited Oxygen Molecules on Combustion of Hydrogen–Oxygen Mixture," J. Phys. D: Appl. Phys. 41 (19), 192001 (6 p.) (2008).

  23. N. P. Vagin, I. V. Kochetov, A. P. Napartovich, N. N. Yuryshev, “Acceleration of Methane–Oxygen Mixture Ignition by Adding Singlet Oxygen Produced in a Chemical Generator," Bull. Lebedev Phys. Inst. 43 (7), 211–216 (2016); DOI: 10.3103/s1068335616070010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Kozlov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 2, pp. 3–11.https://doi.org/10.15372/FGV20210201.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, V.E., Titova, N.S. Simulation of Ignition and Combustion of a Homogeneous Methane–Air Mixture under Local Thermal and Photochemical Impacts. Combust Explos Shock Waves 57, 129–137 (2021). https://doi.org/10.1134/S0010508221020015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221020015

Keywords

Navigation