Skip to main content
Log in

Linking the Madden–Julian Oscillation, tropical cyclones and westerly wind bursts as part of El Niño development

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Westerly wind bursts (WWBs) that occur over the western and central equatorial Pacific are believed to play an important role in ENSO dynamics; however, the mechanisms of WWB generation are still debated. In this study we investigate a link between the Madden–Julian Oscillation (MJO) and WWBs that involves tropical cyclones (TCs) generated within the MJO sufficiently close to the equator. Using an atmospheric reanalysis and WWB composites, we first isolate WWBs that occur (1) between December and April and (2) between May and November, corresponding to the onset and development stages of El Niño. We find that during the onset stage, a warm background sea surface temperature (SST) anomaly develops over the central-western equatorial Pacific with anomalous westerly winds to its west, which draws the MJO convective activity in the southern hemisphere closer to the equator. As a result, westerly wind anomalies associated with the MJO together with tropical cyclones embedded in the MJO induce strong WWBs (during neutral conditions the MJO usually takes a more southerly route and cannot induce strong bursts). Subsequently, during the development stage of El Niño, there develops an anomalous warming in the central-eastern equatorial Pacific, also with corresponding westerly winds, which steers the MJO path, now in the northern hemisphere, toward the equator, strengthening the MJO signal over the central equatorial Pacific. Consequently, tropical cyclones modulated by the MJO move closer to the equator and farther east, facilitating WWBs. Thus, MJO events with embedded tropical cyclones are crucial for the generation process of WWBs during the onset and development of El Niño.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the ERA-interim dataset, [https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim]; Oceanic Niño Index, [https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php];NOAA interpolated outgoing longwave radiation, [https://psl.noaa.gov/data/gridded/data.interp_OLR.html]; International Best Track Archive for Climate Stewardship (IBTrACS v04), (https://www.ncdc.noaa.gov/ibtracs/).

References

  • An SI, Tziperman E, Okumura YM, Li T (2020) ENSO irregularity and asymmetry. El Niño South Oscil Chang Clim 253:153

    Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere865 ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46(12):1687–1712

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97(3):163–172

    Article  Google Scholar 

  • Camargo SJ, Wheeler MC, Sobel AH (2009) Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J Atmos Sci 66(10):3061–3074

    Article  Google Scholar 

  • Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu J-Y, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96(6):921–938

    Article  Google Scholar 

  • Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JC, Ji L, Seidel H, Tippett MK (2007). Pacific meridional mode and El Niño—Southern oscillation. Geophys Res Lett 34(16)

  • Chen D, Lian T, Fu C, Cane MA, Tang Y, Murtugudde R, Song X, Wu Q, Zhou L (2015) Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci 8(5):339

    Article  Google Scholar 

  • Chiodi AM, Harrison DE, Vecchi GA (2014) Subseasonal atmospheric variability and El Niño waveguide warming: observed effects of the Madden–Julian oscillation and westerly wind events. J Clim 27(10):3619–3642

    Article  Google Scholar 

  • Chu P-S (1988) Extratropical forcing and the burst of equatorial westerlies in the western Pacific: A synoptic study. J Meteorol Soc Jpn Ser II 66(4), 549–564

  • Dee DP, Uppala SM, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Eisenman I, Yu L, Tziperman E (2005) Westerly wind bursts: ENSO’s tail rather than the dog? J Clim 18(24):5224–5238

    Article  Google Scholar 

  • Fedorov AV (2002) The response of the coupled tropical ocean-atmosphere to westerly wind bursts. Q J R Meteorol Soc 128(579):1–23

    Article  Google Scholar 

  • Fedorov AV, Brown JN (2009). Equatorial waves. Encycl Ocean Sci 3679–3695

  • Fedorov A, Harper S, Philander S, Winter B, Wittenberg A (2003) How predictable is El Niño? Bull Am Meteorol Soc 84(7):911–920

    Article  Google Scholar 

  • Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2015) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn 44(5–6):1381–1401

    Article  Google Scholar 

  • Fedorov AV, Hu S, Wittenberg AT, Levine AF, Deser C (2020) ENSO low-frequency modulation and mean state interactions. El Niño South Oscil Chang Clim 253:173

    Google Scholar 

  • Feng J, Lian T (2018) Assessing the relationship between MJO and equatorial Pacific WWBs in observations and CMIP5 models. J Clim 31(16):6393–6410

    Article  Google Scholar 

  • Gebbie G, Tziperman E (2009) Predictability of SST-modulated westerly wind bursts. J Clim 22(14):3894–3909

    Article  Google Scholar 

  • Gebbie G, Eisenman I, Wittenberg A, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J Atmos Sci 64(9):3281–3295

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, Stockdale T (2009) Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull Am Meteor Soc 90(3):325–340

    Article  Google Scholar 

  • Guilyardi E, Cai W, Collins M, Fedorov A, Jin F-F, Kumar A, Sun D-Z, Wittenberg A (2012) New strategies for evaluating ENSO processes in climate models. Bull Am Meteor Soc 93(2):235–238

    Article  Google Scholar 

  • Harrison D, Giese BS (1991) Episodes of surface westerly winds as observed from islands in the western tropical pacific. J Geophys Res Oceans 96(S01):3221–3237

    Article  Google Scholar 

  • Harrison D, Vecchi GA (1997) Westerly wind events in the tropical Pacific, 1986–95. J Clim 10(12):3131–3156

    Article  Google Scholar 

  • Hartten LM (1996) Synoptic settings of westerly wind bursts. J Geophys Res Atmos 101(D12):16997–17019

    Article  Google Scholar 

  • Hastings PA (1990) Southern oscillation influences on tropical cyclone activity in the Australian/south-west Pacific region. Int J Climatol 10(3):291–298

    Article  Google Scholar 

  • Hendon HH, Zhang C, Glick JD (1999) Interannual variation of the Madden–Julian oscillation during austral summer. J Clim 12(8):2538–2550

    Article  Google Scholar 

  • Hendon HH, Wheeler MC, Zhang C (2007) Seasonal dependence of the MJO931 ENSO relationship. J Clim 20(3):531–543

    Article  Google Scholar 

  • Hirst AC (1986) Unstable and damped equatorial modes in simple coupled ocean atmosphere models. J Atmos Sci 43(6):606–632

    Article  Google Scholar 

  • Hu S, Fedorov AV (2016) Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci 113(8):2005–2010

    Article  Google Scholar 

  • Hu S, Fedorov AV (2017) The extreme El Niño of 2015–2016: the role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim Dyn 1–19

  • Hu S, Fedorov AV, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts on the diversity and predictability of El Niño events: an ocean energetics perspective. Geophys Res Lett 41(13):4654–4663

    Article  Google Scholar 

  • Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang H-M (2017) Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J Clim 30(20):8179–8205

    Article  Google Scholar 

  • Iskandar I, Lestari D, Utari P, Sari Q, Setiabudidaya D, Mardiansyah W et al (2018). How strong was the 2015/2016 El Niño event? J Phys Conf Ser 1011:012030. IOP Publishing

  • Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33(23)

  • Kessler WS (2001) EOF representations of the Madden–Julian oscillation and its connection with ENSO. J Clim 14(13):3055–3061

    Article  Google Scholar 

  • Kug J-S, Jin F-F, Sooraj K, Kang I-S (2008). State-dependent atmospheric noise associated with ENSO. Geophys Res Lett 35(5)

  • Lander MA (1994) An exploratory analysis 957 of the relationship between tropical storm formation in the western north pacific and ENSO. Mon Weather Rev 122(4):636–651

    Article  Google Scholar 

  • Lengaigne M, Vecchi GA (2010) Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Clim Dyn 35:299–313

    Article  Google Scholar 

  • Lengaigne M, Boulanger J-P, Menkes C, Masson S, Madec G, Delecluse P (2002). Ocean response to the March 1997 westerly wind event. J Geophys Res Oceans 107(C12), SRF–16

  • Lengaigne M, Boulanger J-P, Menkes C, Madec G, Delecluse P, Guilyardi E, Slingo J (2003) The March 1997 westerly wind event and the onset of the 1997/98 El Niño: understanding the role of the atmospheric response. J Clim 16(20):3330–3343

    Article  Google Scholar 

  • Levine AF, Jin FF (2017) A simple approach to quantifying the noise-ENSO interaction. part i: Deducing the state-dependency of the wind stress forcing using monthly mean data. Clim Dyn 48(1–2), 1–18

  • Levine A, Jin FF, McPhaden MJ (2016) Extreme noise-extreme El Niño: How state-dependent noise forcing creates El Niño-La Niña asymmetry. J Clim 29(15):5483–5499

    Article  Google Scholar 

  • Lian T, Chen D, Tang Y, Liu X, Feng J, Zhou L (2018) Linkage between westerly wind bursts and tropical cyclones. Geophys Res Lett 45(20):11–431

    Article  Google Scholar 

  • Liang Y, Fedorov AV, Haertel P (2020). Intensification of westerly wind bursts caused by the coupling of the Madden–Julian Oscillation to SST during El Niño onset and development. Geophys Res Lett (accepted)

  • Liebmann B, Smith CA (1996) Description 982 of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77(6):1275–1277

    Google Scholar 

  • Liebmann B, Hendon HH, Glick JD (1994) The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. J Meteorol Soc Jpn Ser II 72(3):401–412

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29(6):1109–1123

    Article  Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn. Ser. II 44 (1), 25–43.

  • McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Niño. Science 283(5404):950–954

    Article  Google Scholar 

  • McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persis994 tence barriers. Geophys Res Lett 30(9)

  • McPhaden MJ (2004) Evolution of the 2002/03 El Niño. Bull Am Meteorol Soc 85(5):677–696

    Article  Google Scholar 

  • McPhaden MJ, Santoso AWC (2020) El Niño southern oscillation in a changing climat.e American Geophysical Union. In press

  • McPhaden MJ, Yu X (1999) Equatorial waves and the 1997–98 El Niño. Geophys Res Lett 26(19):2961–2964

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006a) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745

    Article  Google Scholar 

  • McPhaden MJ, Zhang X, Hendon H, Wheeler MC (2006). Large scale dynamics and MJO forcing of ENSO variability. Geophys Res Lett 33 (16).

  • Neelin JD, Jin F-F (1993) Modes of interannual tropical ocean-atmosphere interaction—a unified view. part ii: analytical results in the weak-coupling limit. J Atmos Sci 50(21):3504–3522

    Article  Google Scholar 

  • Neelin JD, Jin F-F, Syu H-H (2000) Variations 1006 in ENSO phase locking. J Clim 13(14):2570–2590

    Article  Google Scholar 

  • Puy M, Vialard J, Lengaigne M, Guilyardi E (2016) Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Clim Dyn 46(7–8):2155–2178

    Article  Google Scholar 

  • Puy M, Vialard J, Lengaigne M, Guilyardi E, DiNezio PN, Voldoire A, Balmaseda M, Madec G, Menkes C, Mcphaden MJ (2017). Influence of westerly wind events stochasticity on El Niño amplitude: the case of 2014 vs. 2015. Clim Dyn 1–20

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110(5):354–384

    Article  Google Scholar 

  • Revell CG, Goulter SW (1986) South pacific tropical cyclones and the southern oscillation. Mon Weather Rev 114(6):1138–1145

    Article  Google Scholar 

  • Roundy PE, Kravitz JR (2009) The association of the evolution of intraseasonal oscillations to ENSO phase. J Clim 22(2):381–395

    Article  Google Scholar 

  • Rui H, Wang B (1990) Development characteristics and dynamic structure oftropical intraseasonal convection anomalies. J Atmos Sci 47(3):357–379

    Article  Google Scholar 

  • Seiki A, Takayabu YN (2007) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. part ii: energetics over the western and central Pacific. Mon Weather Rev 135(10):3346–3361

    Article  Google Scholar 

  • Seiki A, Takayabu YN (2007) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. part i: Statistics. Mon Weather Rev 135(10):3325–3345

    Article  Google Scholar 

  • Seiki A, Takayabu YN, Hasegawa T, Yoneyama K (2018) Lack of westerly wind bursts in unmaterialized El Niño years. J Clim 31(2):593–612

    Article  Google Scholar 

  • Slingo J, Rowell D, Sperber K, Nortley F (1999) On the predictability of the interannual behaviour of the Madden–Julian oscillation and its relationship with El Niño. Q J R Meteorol Soc 125(554):583–609

    Google Scholar 

  • Sobel AH, Maloney ED (2000) Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys Res Lett 27(12):1739–1742

    Article  Google Scholar 

  • Thual S, Majda AJ, Chen N, Stechmann SN (2016) Simple stochastic model for El Niño with westerly wind bursts. Proc Natl Acad Sci 113(37):10245–10250

    Article  Google Scholar 

  • Timmermann A, An S-I, Kug J-S, Jin F-F, Cai W, Capotondi A, Cobb K, Lengaigne M, McPhaden MJ, Stuecker MF et al (2018) El Niño–Southern Oscillation complexity. Nature 559(7715):535

    Article  Google Scholar 

  • Torrence C, Webster PJ (1998) The annual cycle of persistence in the El Niño/Southern Oscillation. Q J R Meteorol Soc 124(550):1985–2004

    Google Scholar 

  • Tziperman E, Yu L (2007) Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J Clim 20(12):2760–2768

    Article  Google Scholar 

  • Vecchi GA, Harrison D (2000) Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J Clim 13(11):1814–1830

    Article  Google Scholar 

  • Vincent EM, Lengaigne M, Menkes CE, Jourdain NC, Marchesiello P, Madec G (2011) Interannual variability of the south Pacific convergence zone and implications for tropical cyclone genesis. Clim Dyn 36(9–10):1881–1896

    Article  Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132(8):1917–1932

    Article  Google Scholar 

  • Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J Atmos Sci 56(3):374–399

    Article  Google Scholar 

  • Wu X, Okumura YM, DiNezio PN (2019) What controls the duration of El Niño and La Niña events? J Clim 32(18):5941–5965

    Article  Google Scholar 

  • Yu S, Fedorov AV (2020) The role of westerly wind bursts during different seasons versus ocean heat recharge in the development of extreme El Niño in climate models. Geophys Res Lett 47:e20200GL88381

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño-Southern oscillation. Mon Weather Rev 115(10):2262–2278

    Article  Google Scholar 

  • Zhang C (2005) Madden–Julian oscillation. Reviews of Geophysics 43 (2)

  • Zhao B, Fedorov A (2020) The effects of background zonal and meridional winds on ENSO in a coupled GCM. J Clim 33:2075–2091

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by grants to A.V.F. from NSF (AGS-1405272), NASA (NNX17AH21G) and NOAA (NA20OAR4310377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2686 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Fedorov, A.V. Linking the Madden–Julian Oscillation, tropical cyclones and westerly wind bursts as part of El Niño development. Clim Dyn 57, 1039–1060 (2021). https://doi.org/10.1007/s00382-021-05757-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05757-1

Keywords

Navigation