Skip to main content
Log in

Solid-Phase Microextraction of Phthalate Esters from Aqueous Media by Functionalized Carbon Nanotubes (Graphene Oxide Nanoribbons) and Determination by GC–FID

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes were exposed to hydrothermal treatment for obtaining graphene oxide nanoribbons (GONRs). The fabricated graphene oxide nanoribbons have been morphologically and compositionally characterized via FE-SEM, XRD, and FT-IR techniques. The as-synthesized GONRs have been used as sorbent phase for headspace solid-phase microextraction of phthalate esters (PEs) from aqueous solutions. In this regard, the GC–FID analysis route has been used for quantification of PEs. The new SPME fiber shows remarkable analytical figures of merit including broad dynamic linear ranges, low limits of detection, as well as good stability and reasonable relative standard deviations for evaluation of PEs. The linearity of the method for analysis of PEs including DnBP, DnPP, DEHP, DEHA, BBP, and DMP was between the range of 0.05–100, 0.05–100, 0.1–100, 0.1–100, 0.2–100, and 0.5–100 μg L−1, respectively. The limits of detection (based on S/N = 3) and correlation coefficients were found to be in the range of 0.02–0.2 μg L−1 and 0.9907–0.9952, correspondingly. The prepared GONR-coated SPME fiber shows larger extraction yield in comparison to pristine MWNTs and commercial PDMS SPME fibers. Furthermore, real sample analysis showed that there is no significant matrix effect for evaluation of PEs from environmental water samples and proposed method could be used for evaluation and determination of PEs from aqueous samples in a precise and accurate manner. The existence of functional groups, π–π interactions, as well as hydrogen bonding between adsorbent phase and PE analytes could be the reason for observing such a high extraction yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peñalver A, Pocurull E, Borrull F, Marcé RM (2001) J Chromatogr A 922:377–384. https://doi.org/10.1016/S0021-9673(01)00920-7

    Article  PubMed  Google Scholar 

  2. Sajid M, Basheer C, Alsharaa A, Narasimhan K, Buhmeida A, Al Qahtani M, Al-Ahwal MS (2016) Anal Chim Acta 924:35–44

    Article  CAS  Google Scholar 

  3. Gao D-W, Wen Z-D (2016) Sci Total Environ 541:986–1001. https://doi.org/10.1016/j.scitotenv.2015.09.148

    Article  CAS  PubMed  Google Scholar 

  4. Amanzadeh H, Yamini Y, Moradi M, Asl YA (2016) J Chromatogr A 1465:38–46. https://doi.org/10.1016/j.chroma.2016.08.068

    Article  CAS  PubMed  Google Scholar 

  5. Cheng L, Pan S, Ding C, He J, Wang C (2017) J Chromatogr A 1511:85–91. https://doi.org/10.1016/j.chroma.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  6. Feng Z, Huang C, Guo Y, Tong P, Zhang L (2019) Anal Chim Acta 1084:43–52. https://doi.org/10.1016/j.aca.2019.08.015

    Article  CAS  PubMed  Google Scholar 

  7. Sun M, Feng J, Qiu H, Fan L, Li L, Luo C (2013) J Chromatogr A 1300:173–179. https://doi.org/10.1016/j.chroma.2013.04.061

    Article  CAS  PubMed  Google Scholar 

  8. Feng J, Sun M, Bu Y, Luo C (2015) J Sep Sci 38:128–133

    Article  CAS  Google Scholar 

  9. Du L, Ma L, Qiao Y, Lu Y, Xiao D (2016) Food Chem 197:1200–1206. https://doi.org/10.1016/j.foodchem.2015.11.082

    Article  CAS  PubMed  Google Scholar 

  10. Carnol L, Schummer C, Moris G (2017) Food Anal Methods 10:298–309

    Google Scholar 

  11. Zhang Y, Yang Y, Li Y, Zhang M, Wang X, Du X (2015) Anal Chim Acta 876:55–62

    Article  CAS  Google Scholar 

  12. Xie Q, Sun D, Han Y, Jia L, Hou B, Liu S, Li D (2016) J Sep Sci 39:857–863

    Article  Google Scholar 

  13. Chi J, Gao J (2015) Chemosphere 119:59–64

    Article  CAS  Google Scholar 

  14. Vavrouš A, Pavloušková J, Ševčík V, Vrbík K, Čabala R (2016) J Chromatogr A 1456:196–204

    Article  Google Scholar 

  15. Pang Y-H, Yue Q, Huang Y-Y, Yang C, Shen X-F (2020) Talanta 206:120194

    Article  CAS  Google Scholar 

  16. Guiñez M, Martinez LD, Fernandez L, Cerutti S (2017) Microchem J 131:1–8

    Article  Google Scholar 

  17. Montevecchi G, Masino F, Zanasi L, Antonelli A (2017) Food Chem 221:1354–1360

    Article  CAS  Google Scholar 

  18. González-Sálamo J, González-Curbelo MÁ, Socas-Rodríguez B, Hernández-Borges J, Rodríguez-Delgado MÁ (2018) Chemosphere 201:254–261

    Article  Google Scholar 

  19. Wang J, Huang S, Wang P, Yang Y (2016) Food Control 67:278–284

    Article  CAS  Google Scholar 

  20. Sun M, Feng J, Bu Y, Wang X, Duan H, Luo C (2015) Talanta 134:200–205

    Article  CAS  Google Scholar 

  21. Wang F, Li J, Wu J-F, Zhao G-C (2018) Chromatographia 81:799–807

    Article  CAS  Google Scholar 

  22. Spietelun A, Kloskowski A, Chrzanowski W, Namieśnik J (2012) Chem Rev 113:1667–1685

    Article  Google Scholar 

  23. Song X-L, Chen Y, Yuan J-P, Qin Y-J, Zhao R-S, Wang X (2016) J Chromatogr A 1468:17–22

    Article  CAS  Google Scholar 

  24. Zhang S, Du Z, Li G (2011) Anal Chem 83:7531–7541

    Article  CAS  Google Scholar 

  25. Makkliang F, Kanatharana P, Thavarungkul P, Thammakhet C (2015) Food Chem 166:275–282

    Article  CAS  Google Scholar 

  26. Ghaemmaghami M, Yamini Y, Amanzadeh H, Hosseini Monjezi B (2018) Chem Commun 54:507–510. https://doi.org/10.1039/C7CC08273H

    Article  CAS  Google Scholar 

  27. Liu X, Sun Z, Chen G, Zhang W, Cai Y, Kong R, Wang X, Suo Y, You J (2015) J Chromatogr A 1409:46–52

    Article  CAS  Google Scholar 

  28. Du J, Wang F, Wang Z, Wang X, Du X (2019) Anal Methods 11:1237–1247

    Article  CAS  Google Scholar 

  29. Dargahi R, Ebrahimzadeh H, Alizadeh R (2018) Microchim Acta 185:150

    Article  Google Scholar 

  30. Tamayo F, Turiel E, Martín-Esteban A (2007) J Chromatogr A 1152:32–40

    Article  CAS  Google Scholar 

  31. Luo Z, Cheng G, Li X, Wang L, Shu H, Cui X, Chang C, Zeng A, Fu Q (2019) J Sep Sci 3352:3362

    Google Scholar 

  32. Esfandiarnejad R, Sereshti H, Farahani A (2019) Anal Bioanal Chem 411(16):3631–3640

    Article  CAS  Google Scholar 

  33. Kamalabadi M, Mohammadi A, Alizadeh N (2016) Talanta 156:147–153

    Article  Google Scholar 

  34. Zakerian R, Bahar S (2017) J Sep Sci 40:4439–4445

    Article  CAS  Google Scholar 

  35. Crucello J, Miron LF, Ferreira VH, Nan H, Marques MO, Ritschel PS, Zanus MC, Anderson JL, Poppi RJ, Hantao LW (2018) Anal Bioanal Chem 410:4749–4762

    Article  CAS  Google Scholar 

  36. Trujillo-Rodríguez MJ, Nan H, Anderson JL (2018) J Chromatogr A 1540:11–20

    Article  Google Scholar 

  37. Cheng H, Song Y, Bian Y, Wang F, Ji R, He W, Gu C, Ouyang G, Jiang X (2018) Microchim Acta 185:56

    Article  Google Scholar 

  38. Patil V, Dennis RV, Rout TK, Banerjee S, Yadav GD (2014) RSC Adv 4:49264–49272

    Article  CAS  Google Scholar 

  39. Asadian E, Shahrokhian S, Jokar E (2014) Sens Actuators B Chem 196:582–588

    Article  CAS  Google Scholar 

  40. Dimiev AM, Khannanov A, Vakhitov I, Kiiamov A, Shukhina K, Tour JM (2018) ACS Nano 12:3985–3993. https://doi.org/10.1021/acsnano.8b01617

    Article  CAS  PubMed  Google Scholar 

  41. Wu Z-L, Li C-K, Yu J-G, Chen X-Q (2017) Sens Actuators B Chem 239:544–552. https://doi.org/10.1016/j.snb.2016.08.062

    Article  CAS  Google Scholar 

  42. Higginbotham AL, Kosynkin DV, Sinitskii A, Sun Z, Tour JM (2010) ACS Nano 4:2059–2069. https://doi.org/10.1021/nn100118m

    Article  CAS  PubMed  Google Scholar 

  43. Mehdinia A, Bashour F, Roohi F, Jabbari A, Saleh A (2012) J Sep Sci 35:563–570

    Article  CAS  Google Scholar 

  44. Peijnenburg WJGM, Struijs J (2006) Ecotoxicol Environ Saf 63:204–215. https://doi.org/10.1016/j.ecoenv.2005.07.023

    Article  CAS  PubMed  Google Scholar 

  45. Wang X, Lou X, Zhang N, Ding G, Chen Z, Xu P, Wu L, Cai J, Han J, Qiu X (2015) Environ Toxicol Chem 34:2205–2212

    Article  CAS  Google Scholar 

  46. Banitaba MH, Davarani SS, Pourahadi A (2013) J Chromatogr A 1283:1–8. https://doi.org/10.1016/j.chroma.2013.01.092

    Article  CAS  PubMed  Google Scholar 

  47. Jafari M, Ebrahimzadeh H, Banitaba MH, Davarani SSH (2014) J Sep Sci 37:3142–3149

    Article  CAS  Google Scholar 

  48. Asadollahzadeh H, Noroozian E, Maghsoudi S (2010) Anal Chim Acta 669:32–38. https://doi.org/10.1016/j.aca.2010.04.029

    Article  CAS  PubMed  Google Scholar 

  49. Hou X, Guo Y, Liang X, Wang X, Wang L, Wang L, Liu X (2016) Talanta 153:392–400. https://doi.org/10.1016/j.talanta.2016.03.034

    Article  CAS  PubMed  Google Scholar 

  50. Holadová K, Prokůpková G, Hajšlová J, Poustka J (2007) Anal Chim Acta 582:24–33

    Article  Google Scholar 

  51. Gorji S, Biparva P, Bahram M, Nematzadeh G (2019) Talanta 194:859–869

    Article  CAS  Google Scholar 

  52. Tian T, Wang F, Zhao G-C (2020) Microchem J 153:104510

    Article  CAS  Google Scholar 

  53. Sukree W, Sooksawat D, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C (2020) J Environ Sci Health B 55:60–68

    Article  CAS  Google Scholar 

  54. Mehrani Z, Ebrahimzadeh H, Moradi E (2019) J Chromatogr A 1600:87–94

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thankful of financial support from Arak Branch, Islamic Azad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Niazi.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, M., Niazi, A. & Yazdanipour, A. Solid-Phase Microextraction of Phthalate Esters from Aqueous Media by Functionalized Carbon Nanotubes (Graphene Oxide Nanoribbons) and Determination by GC–FID. Chromatographia 84, 559–569 (2021). https://doi.org/10.1007/s10337-021-04032-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04032-z

Keywords

Navigation